期刊文献+

基于物联网平台的小麦病虫害诊断系统设计初探 被引量:18

Preliminary Research on Diagnosis System Design of Wheat Diseases and Pests Based on the Internet of Things
原文传递
导出
摘要 小麦是中国主要粮食作物,栽培品种多、种植面积大、分布区域广、生长周期长,容易遭受病虫害威胁,快速监测和准确识别病虫害成为一项重要的课题。基于前期构建的小麦物联网监控系统平台,研发了集成图像获取、图像识别诊断于一体的应用系统。初步研究了小麦比较常见的三种病虫害的识别与诊断方法,并利用图像分割、特征提取及数字图像分类识别技术,将物联网系统获取的感白粉病、锈病、蚜虫的不健康叶片与健康小麦叶片的图片分别进行对比实验研究。实验结果显示,识别率都较为理想,其中白粉病的识别率为82.5%,锈病、蚜虫和健康叶片的识别率都在95%以上。将病虫害图像识别技术与物联网技术结合,方便病虫害图像的远程传输、多点获取等优点,大幅度提升对病虫害远程识别和诊断能力,具有广阔的发展前景。 Wheat is one of the major grain crops in China,cultivated in large-scale,distributed in vast areas with long growing cycles and multiple varieties. However,it is easily threatened by diseases and pests. Therefore,rapid monitoring and accurate identification of diseases and pests become an important research project. Based on the wheat monitoring system platform previously developed with Internet of Things( Io T),this study designed a remote diagnosis system combining image acquisition with diagnosis methods. The diagnosis methods for 3 common wheat diseases and pests were studied preliminarily,and 4 pictures of wheat leaves contaminated with powdery mildew,rust,aphis and healthy ones were compared and studied by means of image segmentation,feature extraction and digital image classification. The results showed that the recognition rates had reached desired levels. Among them,the recognition rate for powdery mildew was 82.5%,the recognition rates for rust,aphis and healthy leaves were all above 95%. This study combined the image recognition technology with Io T technology. These technology was convenient for teletransmission of diseases and pests images and multi-peer retrival. These merits have greatly improve our ability in remote identification and diagnosis. This technology has broad development prospect.
出处 《中国农业科技导报》 CAS CSCD 北大核心 2016年第2期86-94,共9页 Journal of Agricultural Science and Technology
基金 "十二五"国家科技支撑计划项目(2011BAD32B03) 国家自然科学基金项目(31401280) 公益性行业(气象)科研专项(GYHY201206023) 中央级公益性科研院所基本科研业务费专项(BSRF201302) 948计划项目(2011-G9) 公益性行业(农业)科研专项(200903010)
关键词 小麦病虫害 物联网 图像识别 机器视觉 远程诊断 wheat diseases and pests internet of things image recognition machine vision remote diagnosis
  • 相关文献

参考文献32

  • 1陈万权.小麦重大病虫害综合防治技术体系[J].植物保护,2013,39(5):16-24. 被引量:74
  • 2司丽丽,曹克强,刘佳鹏,杨军玉,甄文超.基于地理信息系统的全国主要粮食作物病虫害实时监测预警系统的研制[J].植物保护学报,2006,33(3):282-286. 被引量:29
  • 3Smith C S. Image pattern classification for the identification of diseases causing agents in plants [ J]. Comp. Electron. Agric., 2009,66(2) : 121-125.
  • 4Wiwart M, Gabriel F S, Krystyna Z, et al.. Early diagnostics of macronutrient deficiencies in three legume species by color image analysis [J].Comp. Electron. Agric. ,2009,65( 1 ) : 125 -132.
  • 5Pagola M,Ortiz R, Irigoyen I, et al.. New method to assess barely nitrogen nutrition status based on image color analysis: comparison with SPAD-502 [J]. Comp. Electron. Agric., 2009,65(2) : 213-218.
  • 6汪京京,张武,刘连忠,黄帅.农作物病虫害图像识别技术的研究综述[J].计算机工程与科学,2014,36(7):1363-1370. 被引量:61
  • 7Sasaki Y, Okamoto T,Imou K, et al.. Automatic diagnosis of plant disease [J]. J. JSAM,1999,61(2) : 119-126.
  • 8Sasaki Y, Suzuki M. Construction of the automatic diagnosis system of plant disease [ A ]. In: Using Genetic Programming Which Paid Its Attention to Variety [ C ]. ASAE Meeting Presentation, 2003.
  • 9Sammany M, E1-Behagy M. Optimizing neural networks architecture and parameters using genetic algorithms fordiagnosing plant diseases [ A ]. In: Proceeding of and International Computer Engineering Conference [ C ]. IEEE ( Egypt section) ,2006.
  • 10毛罕平,徐贵力,李萍萍.番茄缺素叶片的图像特征提取和优化选择研究[J].农业工程学报,2003,19(2):133-136. 被引量:42

二级参考文献260

共引文献1005

同被引文献236

引证文献18

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部