期刊文献+

回声状态网络研究 被引量:4

Researchon Echo State Network
下载PDF
导出
摘要 回声状态网络是一种新型的递归神经网络,近年来引起诸多学者的关注,对回声状态网络的研究也逐步深入。系统介绍回声状态网络的网络结构、学习过程和主要参数,详细论述几种比较热门的改进算法以及回声状态网络目前的应用研究情况,归纳并且比较该算法与BP神经网络、SVM支持向量机等预测模型各自的优缺点以及适用范围,最后总结回声网络目前存在的问题以及未来的研究方向。 The echo state network( ESN) is a new kind of recurrent neural network which draws the attention of many researchers in recent years,and the research on the ESN is also gradually in-depth. In this paper,the ESN network structure,learning process and major parameters of reservoir are introduced. Several improved algorithms and the applications of the ESN at present are discussed in detail. Then the advantages,disadvantages and applied fields of ESN,BP neural network and support vector machine( SVM) prediction model are compared. Finally the existing problems in current research are summarized and future research directions are proposed.
出处 《成都信息工程学院学报》 2015年第6期546-550,共5页 Journal of Chengdu University of Information Technology
基金 四川省科技支撑计划资助项目(2014SZ0207)
关键词 回声状态网络 储备池 递归神经网络 echo state network reservoir recurrent neural network
  • 相关文献

参考文献26

  • 1Jaeger H. The echo state approach to analyzing and training recurrent neural networks [ R 3. Ger- man National Research Center for Information Technology, 2001.
  • 2Jaeger H. Adaptive Nonlinear System Identification with Echo State Networks [ J]. Nips,2003:609-616.
  • 3Ongenae F, Looy S V, Verstraeten D, et al. Time series classification for the prediction of dialysis in critically ill patients using echo state networks [ J ]. Engineering Applications of Artificial Intelli- gence, 2013, 26(3): 984-996.
  • 4Han S I, Lee J M. Fuzzy Echo State Neural Net- works and Funnel Dynamic Surface Control for Prescribed Performance of a Nonlinear DynamicSystem [ J]. IEEE Transactions on Industrial E- lectronics, 2014, 61(2): 1099-1112.
  • 5Herbert J, Harald H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication [ J]. Science, 2004, 304 (5667) : 78-80.
  • 6裴承丹.回声状态网络及其在图像边缘检测中的应用[J].计算机工程与应用,2008,44(19):172-174. 被引量:8
  • 7韩敏,穆大芸.基于贝叶斯回归的多核回声状态网络研究[J].控制与决策,2010,25(4):531-534. 被引量:13
  • 8罗熊,黎江,孙增圻.回声状态网络的研究进展[J].北京科技大学学报,2012,34(2):217-222. 被引量:27
  • 9Jaeger H. Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the echo state network approach [ R ]. Bremen, Ger- man National Research Center for InformationTe- chnology. 2002.
  • 10Jaeger H, Luko~evicius M, Dan P, et al. 2007 Special Issue: Optimization and applications of echo state networks with leaky-integrator neurons [J]. Neural Networks, 2007, 20(3) : 335-352.

二级参考文献163

共引文献237

同被引文献58

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部