期刊文献+

FastICA算法的一种新推导方法

A new derivation of FastICA algorithm
下载PDF
导出
摘要 利用CR微分理论,提出快速主成分分析(Fast ICA)算法一种完全基于复域上的新的推导方法,避免了原推导方法中因复值数据拆分引起的推导过程繁琐等不足,更易于算法的扩展. By using CR calculus theory,a new derivation of Fast ICA algorithm is presented which can be carried out in the complex domain completely. Due to avoiding splitting complex data into real and imaginary parts,the new derivation has some advantage of less cumbersome in expressions than the original derivation and is more convenient for extension of Fast ICA algorithm.
作者 张宋传
机构地区 闽江学院数学系
出处 《闽江学院学报》 2016年第2期31-34,共4页 Journal of Minjiang University
基金 福建省中青年教师教育科研项目(JA15436)
关键词 FASTICA算法 CR微分 复变量优化问题 牛顿法 FastICA algorithm CR calculus theory complex variables optimization problem Newton method
  • 相关文献

参考文献11

  • 1BINGHAM E,AAPO H.A fast fixed-point algorithm for independent component analysis of complex valued signals[J].International Journal of Neural Systems,2000,10(1):1-8.
  • 2DOUGLAS S C.Fixed-point Fast ICA algorithms for the blind separation of complex-valued signal mixtures[C]//Signals,Systems and Computers,2005.Conference Record of the Thirty-Ninth Asilomar Conference on.IEEE,2005:1 320-1 325.
  • 3NOVEY M,ADALI T.On extending the complex fast ICA algorithm to noncircular sources[J].IEEE Transactions on Signal Processing,2008,56(5):2 148-2 154.
  • 4钟玉泉.复变函数论[M].3版.北京:高等教育出版社,2006.22-27.
  • 5KREUTZ-D K.The complex gradient operator and the CR-calculus[EB/OL].(2009-06-25)[2015-07-01]http://arxiv.org/pdf/0906.4835v1.pdf.
  • 6WEN-J Z,WEN X.Fast estimation of sparse doubly spread acoustic channels[J].Journal of the Acoustical Society of America,2012,131(1):303-317.
  • 7JAVIDI S,MANDIC D P.A fast algorithm for blind extraction of smooth complex sources with application in EEG conditioning[C]//Machine Learning for Signal Processing(MLSP),2010 IEEE International Workshop on.IEEE,2010:397-402.
  • 8XIA Y L,TOOK C C,MANDIC D P.An augmented affine projection algorithm for the filtering of noncircular complex signals[J].Signal Processing,2010,90(6):1 788-1 799.
  • 9Brandwood D H.A complex gradient operator and its application in adaptive array theory[J].Iee Proceedings F Communications Radar&Signal Processing,1983,130(1):11-16.
  • 10FISCHER R.Precoding and signel shaping of digital transmission[M].New York:John Wiey&Sons Incorporated,2002:405-413.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部