期刊文献+

同化MODIS表观热惯量数据对地表水热通量的估算 被引量:1

Improving predictions of water and energy fluxes by assimilating MODIS apparent thermal inertia data
下载PDF
导出
摘要 为弥补缺失农田灌溉资料对模型结果的影响,提高CoLM模型地表水热通量的估算精度,基于集合卡尔曼滤波算法,将表观热惯量(ATI)作为土壤水分的代表值,同化到CoLM(Common Land Model)模型中。选取黑河流域玉米下垫面的大满站,同化MODIS表观热惯量到模型中,将同化结果与模型估算结果、观测值相对比。结果显示:同化后得到的地表水热通量明显比模拟结果更加接近观测值,而MODIS表观热惯量数据的质量和数量也是影响同化结果精度的重要因素,表明表观热惯量的同化能够填补农田灌溉资料的缺失,改进模型地表水热通量的估算结果。 Apparent thermal inertia(ATI)characterizes the resistance to surface temperature changes,which can indicate changes in surface soil moisture.As a proxy of soil moisture,based on Ensemble Kalman filter algorithm(EnKF),ATI was assimilated into the Common Land Model(CoLM)to improve model estimation accuracy of surface water and energy fluxes as the missing of irrigation information.We selected Daman site over Heihe watershed,a corn farmland,assimilated MODIS ATI into CoLM,and compared assimilation estimation to simulation and observation.Results show that assimilation estimation is closer to observation.And the quality and quantity of MODIS ATI data are both important factors for data assimilation results.This indicates that the assimilation of ATI makes up the missing of irrigation information,and is able to improve CoLM estimation accuracy of surface water and energy fluxes.
出处 《中国科技论文》 CAS 北大核心 2016年第3期251-257,共7页 China Sciencepaper
基金 高等学校博士学科点专项科研基金资助项目(20120003120017) 国家自然科学基金资助项目(41201330) 遥感科学国家重点实验室自由探索/青年人才项目(15ZY-02)
关键词 数据同化 表观热惯量 显热通量 潜热通量 土壤水分 data assimilation apparent thermal inertia sensible heat flux latent heat flux soil moisture
  • 相关文献

参考文献2

二级参考文献27

  • 1李新,黄春林.数据同化——一种集成多源地理空间数据的新思路[J].科技导报,2004,22(12):13-16. 被引量:39
  • 2黄妙芬,刘绍民,刘素红,朱启疆.地表温度和地表辐射温度差值分析[J].地球科学进展,2005,20(10):1075-1082. 被引量:27
  • 3黄春林,李新.基于集合卡尔曼滤波的土壤水分同化试验[J].高原气象,2006,25(4):665-671. 被引量:43
  • 4闫岩,柳钦火,刘强,李静,陈良富.基于遥感数据与作物生长模型同化的冬小麦长势监测与估产方法研究[J].遥感学报,2006,10(5):804-811. 被引量:63
  • 5Reichle, R H. Data assimilation methods in the earth sciences [J]. Advances in Water Resources, 2008, 31 (11) : 1411-1418.
  • 6Anderson J L, Anderson S L. A Monte Carlo imple: mentation of the nonlinear filtering problem to produce ensemble assimilations and forecasts [J]. Monthly Weather Review, 1999, 127: 2741-2758.
  • 7Constantinescu E M, Sandu A, Chai T, et al. Ensem- ble-based chemical data assimilation, h general ap- proach [J]. Quarterly Journal of the Royal Meteoro- logical Society, 2007, 133(626): 1229-1243.
  • 8Bai Yulong, Li Xin. Evolutionary algorithm-based error parameterization methods for data assimilation [J]. Monthly Weather Review, 2011, 139(8) : 2668-2685.
  • 9Corazza M, Kalnay E, Patil D J, et al. Use of the breeding technique to estimate the shape of the analysis "errors of the day" [J]. Journal of Geophysical Re- search, 2003, 10: 233-243.
  • 10Liang Xiao, Zheng Xiaogu, Zhang Shupeng, et al. Maximum likelihood estimation of inflation factors on error covariance matrices for ensemble Kalman filter as-similation [J]. Quarterly Journal of the Royal Meteoro- logical Society, 2012, 138(662): 263-273.

共引文献11

同被引文献14

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部