期刊文献+

双目标区间值规划的免疫遗传算法 被引量:1

Immune Genetic Algorithm-based Bi-Objective Interval-Valued Programming
下载PDF
导出
摘要 探讨求解双目标区间值规划的免疫遗传算法。算法设计中,利用个体间的支配关系,将种群划分为优质、劣质种群,并沿着不同进化方式产生优质和多样个体;利用新拥挤模型,剔除种群中冗余个体,确保进化种群中个体分布的均匀性。数值比较实验表明,该算法在获解质量和解分布方面有一定优势。 tigated. In lmions by For the problem of bi-objective interval-valued programming, an immune genetic algorithm was inves- the design of algorithm, the current population is divided into superior and inferior-quality sub-popu- taking advantage of the relationship of dominance between individuals. Such two subpopulations create excellent and diverse individuals through evolution along different evolutionary directions. In the process of solu- tion search, some redundant individuals are eliminated by means of a new crowding model, which ensures that those individuals in the population have uniform distributions. Numerically comparative results have showed that the algorithm is of potential for bi-objective interval-valued programming problems, with respect to solution quali- ty and solution distribution.
出处 《贵州大学学报(自然科学版)》 2016年第1期82-85,共4页 Journal of Guizhou University:Natural Sciences
基金 国家自然科学基金项目资助(61563009) 教育部博士点基金项目资助(20125201110003) 贵州大学研究生创新基金项目资助(研理工2015057)
关键词 双目标区间值规划 免疫遗传算法 区间分析 拥挤度 bi-objective interval-valued programming immune genetic algorithm interval analysis crowding degree
  • 相关文献

参考文献7

  • 1李方义,李光耀,郑刚.基于区间的不确定多目标优化方法研究[J].固体力学学报,2010,31(1):86-93. 被引量:22
  • 2CHENG Jin, DUAN Guifang, LIU Zhengyu, et al.Interval multi-ob- jective optimization of structures based on radial basis function,in- terval analysis, and NSGA- II[ J ]. Journal of Zhejiang University- Science,2014,15(10) :774-788.
  • 3李新兰,姜潮,韩旭.基于区间的不确定多目标优化方法及应用[J].中国机械工程,2011,22(9):1100-1106. 被引量:25
  • 4Bhunia A K, Samanta S S.A study of interval metric and its applica- tion in multi-objective optimization with interval objectives [ J]. Computers & Industrial Engineering, 2014,74 : 169-178.
  • 5Limbourg P, Aponte D E S. An optimization algorithm for imprecise multi-objective problem functions[ C]//Evolutionary Computation, 2005 IEEE Congress, Edinburgh,Scotland : IEEE ,2005,1:459-466.
  • 6GONG Dunwei, QIN Nana, SUN Xiaoyan. Evolutionary algorithms for multi-objective optimization problems with interval parameters [ C ]//Bio-Inspired Computing: Theories and Applications (BIC- TA) ,2010 IEEE Fifth International Conference, Changsha:IEEE, 2010:411-420.
  • 7章恩泽,吴益飞,陈庆伟.一类区间多目标粒子群优化算法[J].控制与决策,2014,29(12):2171-2176. 被引量:9

二级参考文献47

  • 1亢战,罗阳军.基于凸模型的结构非概率可靠性优化[J].力学学报,2006,38(6):807-815. 被引量:41
  • 2Liu B D, Iwamura K. Fuzzy programming with fuzzy deeisions and fuzzy simulation-based genetic algorithm [J]. Fuzzy Sets and Systems, 2001, 122: 253-262.
  • 3Charnes A, Cooper W W. Chance-constrained programing[J]. Management Science, 1959, 6 (1) 73-79.
  • 4Abbas M, Bellahcene F. Cutting plane method for multiple objective stochastic integer linear programming[J]. European Journal of Operational Research, 2006,168(3) :967-984.
  • 5Tong S C. Interval number and fuzzy number linear programming[J]. Fuzzy Sets and Systems, 1994, 66 (3) : 301-306.
  • 6Chanas S, Kuchta D. Multiobjective programming in optimization of interval objective functions a generalized approach[J]. European Journal of Operational Research, 1996, 94: 594-598.
  • 7Sengupta A, Pal T K, Chakraborty D. Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming[J]. Fuzzy Sets and Systems, 2001, 119: 129-138.
  • 8Jiang C, Han X, Liu G R. A nonlinear interval number programming method for uncertain optimization problems[J]. European Journal of Operational Research, 2008,188(1) : 1-13.
  • 9Jiang C, Han X, Liu G R,Li G Y. The optimization of the variable binder force in U-shaped forming with uncertain friction coefficient[J]. Journal of Material Processing. Technology, 2007, 182:262-267.
  • 10Jiang C, Han X, Guan F J,Li Y H. An uncertain structural optimization method based on nonlinear interval number programming and interval analysis method [J]. Engineering Structures, 2007, 29: 3168-3177.

共引文献39

同被引文献3

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部