期刊文献+

基于改进Census变换和动态规划的立体匹配算法 被引量:46

Stereo Matching Algorithm Based on Improved Census Transform and Dynamic Programming
原文传递
导出
摘要 为降低双目立体匹配算法在视差不连续区域和噪声干扰情况下的误匹配率,提出了一种基于改进Census变换和动态规划的立体匹配算法。采用支持区域为十字交叉形状窗口且设有噪声容限的改进Census变换进行代价计算,提高了单像素匹配代价的可靠性;利用引导图滤波器快速有效地完成代价聚合;在视差选择阶段,设计了一种改进的动态规划算法,消除了扫描线效应,提高了匹配速度和正确率;经过视差后处理得到最终视差图。实验结果表明,该算法在Middlebury测试平台上的平均误匹配率为5.31%,在低纹理区域和视差不连续区域均能得到准确的视差,运算复杂度低且具有较好的稳健性。 In order to reduce the mismatching rate of binocular stereo matching algorithm in the disparity discontinuity region and under noise disturbance, a stereo matching algorithm based on improved Census transform and dynamic programming is proposed. An improved Census transform with a noise margin is applied to compute the cost based on a cross shape support region. The reliability of single pixel matching cost is enhanced. The guided image filter is used to aggregate the cost volume fast and efficiently. In the disparity selecting step, an improved dynamic programming algorithm is designed to eliminate the scan-line effect and improve the matching speed and accuracy. The final disparity maps are gained after post-processing. The experimental results demonstrate that the proposed algorithm evaluated on the Middlebury benchmark achieves an average error rate of 5.3194, and the accurate disparity can be obtained in both low texture and disparity discontinuity regions with low computing complexity and strong robustness.
出处 《光学学报》 EI CAS CSCD 北大核心 2016年第4期208-216,共9页 Acta Optica Sinica
基金 国家自然科学基金(61375025 61075011 60675018)
关键词 机器视觉 立体匹配 Census变换 动态规划 引导图滤波 视差 machine vision stereo matching Census transform dynamic programming guided image filtering disparity
  • 相关文献

参考文献5

二级参考文献66

  • 1张维中,张丽艳,王晓燕,丁志安.基于标记点的图像特征匹配的鲁棒算法[J].中国机械工程,2006,17(22):2415-2418. 被引量:9
  • 2孙军华,张广军,魏振忠,周富强.大型自由曲面移动式三维视觉测量系统[J].仪器仪表学报,2006,27(12):1688-1691. 被引量:19
  • 3Zhang K, Lu J, La{ruit G. Crosabased local stereo matching using orthogonal integral images [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2009, 19(7) : 1073- 1079.
  • 4Veksler O. Fast variable window for stereo correspondence using integral images [ C]. 1EEE Computer Society Conference on Computer Vision and Pattern Recognitions, 2003, 1: 1-556- 1-561.
  • 5Yoon K J, Kweon I S. Adaptive support-weight approach for correspondence search[J]. IEEE Trans Pattern Anal Mach Intell, 2006, 28(4): 650-656.
  • 6Yang Q, Wang L, Yang R, et al. Stereo matching with color weighted correlation, hierarchical belief propagation, and occlusion handling[J]. IEEE Transactions on Pootem Analysis and Mechine Intelligence, 2009, 31(3): 492-504.
  • 7Klaus A, Sormann M, Karner K. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure [J]. Proceedings of the IEEE 18th International Conference on Pattern Recognition, 2006, 3: 15-18.
  • 8Hu W, Zhagn K, Sun L, et al.Virtual support window for adaptive-weight stereo matching[C]. Proceedings of the IEEE Visual Communications and Image Processing, 2011. 1-4.
  • 9De-Maeztu L, Villanueva A, Cabeza R. Stereo matching using gradient similarity andlocally adaptive support-weight[J]. Pattern Recogn Lett, 2011, 32(13): 1643-1651.
  • 10Lei C, Seizer J, Yang Y. Region-tree based stereo using dynamic programming optimization[J]. Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Reeognitim, 2006, 2: 2378-2385.

共引文献94

同被引文献186

引证文献46

二级引证文献182

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部