期刊文献+

基于蚁群算法的面向服务软件的部署优化方法 被引量:5

Deployment Optimization of Service-Oriented Software Based on Ant Colony Algorithm
下载PDF
导出
摘要 面向服务软件的部署优化问题是典型的NP难题.本文构建了基于性能改善的软件部署优化模型,设计了一种蚁群优化算法ACO-DO进行近似最优解的快速求解.该算法通过设计基于部署优化问题的启发式、改进部署方案的构建顺序、增加局部搜索过程实现蚁群算法求解效率的提升.通过不同规模的实例实验,验证了ACO-DO算法能够取得比现有的混合整数线性规划算法、蚁群算法和遗传算法更好的性能. The deployment optimization of service-oriented software is well known to be NP hard. In this paper,a software deployment optimization model is built for improving the performance of service-oriented software,and an Ant Colony Algorithm for Deployment Optimization( ACO-DO) is designed to solve it so that the near-optimal solutions can be obtained quickly. The algorithm improves ant colony algorithm by designing a heuristic based on the considered problem,optimizing the orders of constructing deployment solutions and adding a local search procedure. A series of instances with different sizes are tested and analyzed. The experimental results showthat the designed ACO-DO algorithm performs better than the existing Mixed Integer Linear Programming,ant colony and genetic algorithms.
出处 《电子学报》 EI CAS CSCD 北大核心 2016年第1期123-129,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.61373038 No.61070012) 国家863高技术研究发展计划(No.2012AA011204-01)
关键词 面向服务的软件 部署优化 蚁群算法 性能 service-oriented software deployment optimization ant colony algorithm performance
  • 相关文献

参考文献16

  • 1Vittorio C, Antinisca D M, Paola I. Model-Based SoftwarePerformance Analysis [ M ]. Berlin Heidelberg: Springer, 2011.
  • 2胡剑军,官荷卿,魏峻,黄涛.一种基于性能模型的中间件自配置框架[J].软件学报,2007,18(9):2117-2129. 被引量:10
  • 3Wada H, Suzuki J, Yamano Y, et al. Evolutionary deploy- ment optimization for service-oriented clouds [ J ]. Software Practice and Experience,2011,41 (5) :469 - 493.
  • 4Frey S, Fittkau F, Hasselbring W. Search-based genetic op- timization for deployment and reconfiguration of software in the cloud [ A]. Proceedings of the 2013 International Conference on Software Engineering [ C ]. San Francisco: IEEE,2013. 512 -521.
  • 5Jayasinghe D, Pu C, Eilam T. Improving performance and availability of services hosted on IaaS clouds with structural constraint-aware virtual machine placement [ A ]. Proceed- ings of the 2011 IEEE International Conference on Services Computing [ C ]. Washington DC : IEEE, 2011.72 - 79.
  • 6Malek S, Medvidovic N, Mikic-Rakic M. An extensible framework for improving a distributed software system "s deployment architecture [ J ]. IEEE Transactions on Soft- ware Engineering,2012,38( 1 ) :73 -100.
  • 7White J, Dougherty B ,Thompson C, et al. ScatterD. Spatial deployment optimization with hybrid heuristicevolutionary algorithms[ J]. ACM Transactions on Autonomous and A- daptive Systems, 2011,6 ( 3 ) : 123 - 154.
  • 8南国芳,陈忠楠.基于进化优化的移动感知节点部署算法[J].电子学报,2012,40(5):1017-1022. 被引量:15
  • 9张晓薇,曹东刚,陈向群,梅宏.一种网络化移动应用部署方案优化方法[J].软件学报,2011,22(12):2866-2878. 被引量:10
  • 10Aleti A, Grunske L, Meedeniya I, et al. Let the ants de- ploy your software-an ACO based deployment optimiza- tion strategy [ A ] Proceedings of the 24th IEEE/ACM International Conference on Automated Software Engi- neering [ C] . Auckland: IEEE, 2009. 505 - 509.

二级参考文献50

  • 1孙永进,孙雨耕,房朝晖.无线传感器网络的连通与覆盖[J].天津大学学报(自然科学与工程技术版),2005,38(1):14-17. 被引量:24
  • 2Derek J Bennet, Colin R McInnes. Distributed control of multirobot systems using bifurcating potential fields[J].Robotics and Autonomous Systems, 2010,58 (3) : 256 - 264.
  • 3Dorigo M, Maniezzo V, Colomi A. Ant system: optimization by a colony of cooperating agent[ J]. IEEE Transactions on Systems, Man, and Cybernetics, 1996,26( 1 ) :29 - 41.
  • 4Lim Kwee Kim, Ong Yew-Soon,Lim Meng Hiot,et al.Hybrid ant colony algorithms for path planning in sparse graphs E J]. Soft Computing, 2008,12(10) :981 - 994.
  • 5Garcia M A Porta, Montiel Oscar, Casfillo Oscar, et al. Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation[ J]. Applied Soft Computing,2009,9(3) : 1102 - 1110.
  • 6Stutzle T, Hoos H H. Max-min ant system and local search for the travelling salesman problem[ A]. IEEE International Conference on Evolutionary Computation[ C ]. Indianapolis: IEEE Press, 1997.309 - 314.
  • 7Botee H M, Bonabeau E. Evolving ant colony optimization [J].Compex System, 1998,1 (2) : 149 - 159.
  • 8BI Xiao-jun,LUO Guang-xin. The improvement of ant colony algorithm based on the inver-over operator[ A]. IEEE International Conference on Mechatronics and Automation [C ]. Harbin: IEEE Press, 2007.2383 - 2387.
  • 9Kennedy J, Eberhart R C. Particle swarm optimization[ A]. IEEE International Conference on Neural Networks [ C ]. Piscataway, NJ: IEEE Press, 1995.1942 - 1948.
  • 10Asl,L B,Nezhad, V M. Improved particle swarm optimization for dual-channel speech enhancement [A]. International Conference on Signal Acquisition and Processing[C]. Bangalore, India: IEEE Press,2010.13- 17.

共引文献171

同被引文献37

引证文献5

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部