期刊文献+

融合解析模型和综合模型的压缩感知算法 被引量:3

Compressed Sensing Algorithm Fused the Cosparse Analysis Model and the Synthesis Sparse Model
下载PDF
导出
摘要 如何利用更多的图像先验知识来提高图像的重构质量是压缩感知的一个关键问题.本文将综合稀疏模型与近几年提出的Cosparse解析模型结合,利用图像在综合字典和解析字典下的稀疏性提出了一种融合两种稀疏先验的图像重构算法,并利用交替方向乘子法(ADMM)求解对应的复杂优化问题.为进一步提高算法性能,该算法还充分利用了图像中任意位置图像块的稀疏性.实验结果表明,本文算法能有效提高图像重构质量. How to improve the reconstructed image quality using more prior know ledge of the image is still a crucial issue of compressed sensing. In this paper,w e combine the synthesis sparse model and the cosparse analysis model proposed in recent years,and propose a novel reconstruction algorithm based on the sparsity of the image over a synthesis dictionary and an analysis dictionary. M oreover,alternating direction method of multipliers( ADM M) is exploited to solve the corresponding complicated optimization problem. To further improve the performance,the sparsity of patches in any position of the image is utilized by the proposed algorithm. The experimental results show that our algorithm can effectively improve the quality of image reconstruction.
出处 《电子学报》 EI CAS CSCD 北大核心 2016年第3期613-619,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.61071200 No.61471313) 河北省自然科学基金(No.F2014203076)
关键词 压缩感知 稀疏表示 Cosparse解析模型 图像重构 compressed sensing sparse representation cosparse analysis model image reconstruction
  • 相关文献

参考文献2

二级参考文献48

  • 1D Donoho. Compressed sensing[ J]. IEEE Trans Inform Theory,2006,52(4) : 1289 - 1306.
  • 2M A T Figueiredo, R D Nowak, S J Wright. Gradient projection for sparse reconstruction: Appfication to compressed sensing and other inverse problems [ J ]. IEEE J Selected Topics in Signal Processing: Special Issue on Convex Optimization Methods for Signal Processing, 2007,1(4) :586 - 598.
  • 3I Daubechies, M Defrise, C De Mol. An iterative thresholding algorithm for finear inverse problems with a sparsity constraint [ J]. Comm Pure Appl Math,2004,57( 11 ):1413 - 1457.
  • 4T Blumensath, M Davies. Iterative hard thresholding for compressed sensing[ J]. Appl Comput Harmon Anal, 2009, 27 ( 3 ) : 265 - 274.
  • 5A C Gilbert, S Guha, P Indyk, S Muthukrishnan, M J Strauss. Near-optimal sparse Fourier representations via sampling[ A]. Proc. of the 2002 ACM Symposium on Theory of Computing STOC[C]. Montreal, Quebec, Canada, 2002. 152 - 161.
  • 6E Candbs, J Romberg, T Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [ J]. IEEE Trans Inform Theory ,2006,52(2) :489- 509.
  • 7E Candes, T Tao. Error correction via linear programming [A]. Proc. of 46th Annual IEEE Symposium on Foundations of Computer Science FOCS [ C ] . Pittsburgh, Pennsylvania, USA. 2005.295 - 308.
  • 8S Mallat, Z Zhang. Matching pursuit in a time-frequency dictionary[ J]. IEEE Trans Singal Processing, 1993,41 (12) : 3397 - 3415.
  • 9E J Candes, T Tao. Decoding by linear programming [ J ]. IEEE Trans Inform Theory,2005,51 (12):4203- 4215.
  • 10S J Kim, K Koh, M Lustig, S Boyd, D Gorinevsky. A interiorpoint method for large-scale ly-regularized least-squares problems with applications in signal processing and statistics[J]. Journal of Machine Learning Research, 2007,7 ( 8 ) : 1519 - 1555.

共引文献121

同被引文献14

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部