期刊文献+

二维纳米材料的自上而下制备:可控液相剥离 被引量:5

Top-down fabrication of two-dimensional nanomaterials:Controllable liquid phase exfoliation
下载PDF
导出
摘要 二维纳米材料独特的结构特征赋予了其众多的优异性质,充分利用这些特性有利于实现新材料的制备和新产品的开发,而二维纳米材料的规模化可控制备是实现其广泛应用的必要前提。在众多制备二维纳米材料的各类方法中,基于层状前驱体的液相剥离法以其较高的效率和良好的操控性等优点受到了广泛关注。本文详细阐述了二维纳米材料的优异特性及其潜在应用,并以目前研究最为广泛的几种二维纳米材料为例,重点介绍了几种常见的基于三维层状晶体的液相剥离以制备二维纳米材料的方法,最后对各种液相剥离法的适用性进行总结,并对二维纳米材料的发展前景进行展望。 Two-dimensional nanomaterials have unique structural characteristics and various extraordinary properties,w hich make them attractive for use in the preparation of advanced materials and new products. Large-scale fabrication of these nanomaterials in a controllable way is key for the realization of their applications. Liquid phase exfoliation has been given a great deal of attention in making two-dimensional nanomaterials owing to its high efficiency and excellent controllability. This review elaborates on the superior characteristics and potential applications of two-dimensional nanomaterials while focusing on liquid phase exfoliation methods,including ion-exchange,intercalation-exfoliation,oxidation-reduction,selective etching,direct sonication and shear exfoliation methods.The mechanisms and applicability of these methods are compared and the development prospects of two-dimensional nanomaterials are discussed.
出处 《新型炭材料》 SCIE EI CAS CSCD 北大核心 2016年第2期97-114,共18页 New Carbon Materials
基金 国家自然科学基金(51502046 21564002) 贵州省科学技术基金(黔科合JZ字[2015]2004号) 贵州省科技计划项目(黔科合LH字[2014]7602) 贵州省留学人员科技创新项目(黔人项目资助合同[2015]11号) 贵州大学引进人才科研项目(贵大人基合字[2014]45号)~~
关键词 二维纳米材料 层状晶体 自上而下制备法 液相剥离 自组装 Two-dimensional nanomaterials Layered crystals Top-down fabrication Liquid phase exfoliation Self-assembly
  • 相关文献

参考文献1

二级参考文献34

  • 1Allen M J, Tung V C, Kaner R B. Honeycomb carbon: A re- view of graphene [ J]. Chem Rev, 2009, 110: 132-145.
  • 2Rao C N R, Sood A K, Voggu R, et al. Some novel attributes of graphene [J]. J Phys Chem Lett, 2010, 1(2) : 572-580.
  • 3Kamat P V. Graphene based nanoarchitectures: Anchoring semi- conductor and metal nanoparticles on a two-dimensional carbon support [J]. J Phys Chem Lett, 2009, 1: 520-527.
  • 4Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: Synthesis, properties, and applications [J]. Adv Mater, 2010, 22(46) : 5226.
  • 5Huang Y, Liang J J, Chen Y S. An overview of the applications of graphene-based materials in supercapacitors [ J ]. Small,2012, 8(12): 1805-1834.
  • 6Stankovich S, Dikin D A, Dommett G H B, et al. Graphene- basedcomposite materials [J]. Nature, 2006, 442(7100) : 282- 286.
  • 7Li D, Muller M B, Gilje S, et al. Processable aqueous disper- sions of graphene nanosheets [ J ]. Nat Nanotechnol, 2008, 3 (2) : 101-105.
  • 8Stankovich S, Dikin D A, Piner R D, et al. Synthesis of gra- phene-based nanosheets via chemical reduction of exfoliated graphite oxide [J]. Carbon, 2007, 45(7) : 1558-1565.
  • 9Sokolov D A, Shepperd K R, Orlando T M. Formation of gra- phene features from direct laser-induced reduction of graphite oxide [J]. J Phys Chem Lett, 2010, 1(18) : 2633-2636.
  • 10Huang L, Liu Y, Ji L C, et al. Pulsed laser assisted reduction of graphene oxide [J]. Carbon, 2011,49(7) : 2431-2436.

共引文献18

同被引文献21

引证文献5

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部