期刊文献+

代价敏感的监督流形学习人脸识别方法

Face Recognition Method Based on Cost-Sensitive Supervised Manifold Learning
原文传递
导出
摘要 基于子空间学习的人脸识别均假设所有错误识别会导致一样的损失。在人脸识别应用中,不同的错误识别造成的损失则不同。提出一种代价敏感的监督流形学习人脸识别方法,该方法采用一个代价矩阵来指定不同的误分类代价,并将其容纳到局部保持投影(Locality Preserving Projections,LPP)算法中,获得相应的代价敏感局部保持投影(Cos-Sen LPP),以实现人脸识别整体损失最小化。在3个人脸数据库上的实验结果表明,与现有的子空间学习方法相比,Cos-Sen LPP方法花费了最少的整体代价。 Existing subspace learning-based face recognition methods assume the same loss from all misclassifications. In the real-world face recognition applications, however, different misclassifications can lead to different losses. Motivated by this concern, a cost-sensitive supervised manifold learning approach for face recognition was proposed. The proposed approach incorporated a cost matrix to specify the different costs associated with misclassifications of subjects, into locality preserving projection algorithm, which devised the corresponding cost-sensitive methods, namely, cost-sensitive locality preserving projections(Cos-Sen LPP), to achieve a minimal overall loss. Three face databases were put into the experiments and experimental results show that Cos-Sen LPP method can achieve minimal cost than existing subspace learning-based face recognition methods.
出处 《系统仿真学报》 CAS CSCD 北大核心 2016年第5期1077-1085,共9页 Journal of System Simulation
关键词 代价敏感 流形学习 人脸识别 局部保持投影 cost-sensitive manifold learning face recognition Locality Preserving Projections(LPP)
  • 相关文献

参考文献8

二级参考文献116

  • 1王蕴红,范伟,谭铁牛.融合全局与局部特征的子空间人脸识别算法[J].计算机学报,2005,28(10):1657-1663. 被引量:41
  • 2孙涛,谷士文,费耀平.基于PCA算法的人脸识别方法研究比较[J].现代电子技术,2007,30(1):112-114. 被引量:14
  • 3黄睿,何明一,杨少军.一种适用于小样本问题的基于边界的特征提取算法[J].计算机学报,2007,30(7):1173-1178. 被引量:6
  • 4Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding[J]. Science, 2000, 290(12): 2323-2326.
  • 5Tenenbaum J B, de Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction[J]. Science, 2000, 290(12): 2319-2322.
  • 6He Xiaofei, Cai Deng, Yan Shuicheng, et al. Neighborhood Preserving Embedding[C]//Proc. of ICCV'05. Beijing, China: IEEE Press, 2005: 1208-1213.
  • 7Graf A B A, Smola A J, Borer S. Classification in a normalized feature space using support vector machines [ J ]. IEEE Transactions on Neural Networks, 2003, 14 (3) : 597-605.
  • 8Cox T F, Cox M A A. Multidimensional Scaling[ M]. 2nd ed. London: Chapman & Hall , 2001 : 124-127.
  • 9Rowels S T, Saul L K. Nonlinear dimensionality reduction by loe~dly linear embedding I J I. Science, 2000, 290 ( 5500 ) : 2323 -2326.
  • 10Niyogi P. Laplacian eigenmaps for dimensionality reduction anddata representation [ J ]. Neural Computation, 2003, 15 (6) : 1373-1396.

共引文献167

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部