摘要
The properties of titanium carbonitride Ti(CxN1-x) inclusions precipitated during solidification of tire cord steels and the thermodynamic conditions for their decomposition and solid solution during billet heating were investigated using a thermodynamics method. The solid solution of Ti(CxN1-x) inclusions during high-temperature heating was also studied experimentally. The results revealed that: (1) the higher the content of carbon in the tire cord steel is, the greater the value of .r in the Ti(CxN1-x) inclusions is; (2) the higher the content of carbon in the tire cord steel is, the earlier the Ti(CxN1-x) inclusions precipitated during the solidification process and the lower the solidification front temperature is during precipitation; (3) when an 82A steel sample was heated to 1087℃, the Ti(CxN1-x) inclusions possess the thermodynamic conditions of decomposition and solid solution; and (4) when 82A samples were heated to 1150 and 1 250℃, the total number of Ti(CxN1-x) inclusions larger than 5μm in diameter decreased by 55.0% and 70.3%, respectively. In addition, although smaller inclusions with diameter less than 2 μm continued to decompose when the sample was heated at 1 250℃ for 2 h and then cooled to 1000℃ in the furnace, the number of inclusions larger than 5 μm in diameter increased.
The properties of titanium carbonitride Ti(CxN1-x) inclusions precipitated during solidification of tire cord steels and the thermodynamic conditions for their decomposition and solid solution during billet heating were investigated using a thermodynamics method. The solid solution of Ti(CxN1-x) inclusions during high-temperature heating was also studied experimentally. The results revealed that: (1) the higher the content of carbon in the tire cord steel is, the greater the value of .r in the Ti(CxN1-x) inclusions is; (2) the higher the content of carbon in the tire cord steel is, the earlier the Ti(CxN1-x) inclusions precipitated during the solidification process and the lower the solidification front temperature is during precipitation; (3) when an 82A steel sample was heated to 1087℃, the Ti(CxN1-x) inclusions possess the thermodynamic conditions of decomposition and solid solution; and (4) when 82A samples were heated to 1150 and 1 250℃, the total number of Ti(CxN1-x) inclusions larger than 5μm in diameter decreased by 55.0% and 70.3%, respectively. In addition, although smaller inclusions with diameter less than 2 μm continued to decompose when the sample was heated at 1 250℃ for 2 h and then cooled to 1000℃ in the furnace, the number of inclusions larger than 5 μm in diameter increased.
基金
Item Sponsored by Science Research Plan of Wuhan Science and Technology Bureau of China(201210321098)