期刊文献+

A collocation method for numerical solutions of fractional-order logistic population model 被引量:1

A collocation method for numerical solutions of fractional-order logistic population model
原文传递
导出
摘要 In this study, a collocation technique is presented for approximate solution of the fractional-order logistic population model. Actually, we develop the Bessel collocation method by using the fractional derivative in the Caputo sense to obtain the approximate solutions of this model problem. By means of the fractional derivative in the Caputo sense, the collocation points, the Bessel functions of the first kind, the method transforms the model problem into a system of nonlinear algebraic equations. Numerical applications are given to demonstrate efficiency and accuracy of the method. In applications, the reliability of the scheme is shown by the error function based on the accuracy of the approximate solution.
出处 《International Journal of Biomathematics》 2016年第2期235-248,共14页 生物数学学报(英文版)
关键词 Fractional-order logistic population model functions of first kind collocation method approximate differential equations. fractional derivative Bessel solution: nonlinear fractional Caputo分数阶导数 人口模型 数值解 逻辑 配点法 非线性代数方程组 贝塞尔函数 搭配方法
  • 相关文献

参考文献26

  • 1S. Abbas, M. Banerjee and S. Momani, Dynamical analysis of fractional-order modified logistic model, Comput. Math. Appl. 62 (2011) 1098-1104.
  • 2A. K. Alomari, M. S. M. Noorani, R. Nazar and C. P. Li, Homotopy analysis method for solving fractional Lorenz system, Commun. Nonlinear Sci. Numer. Simulat. 15 (2010) 1864-1872.
  • 3S. Das and P. K. Gupta, A mathematical model on fractional Lotka-Volterra equations, J. Theor. Biol. 277 (2011) 1-6.
  • 4K. Diethelm, N. J. Ford, A. D. Freed and Yu. Luchko, Algorithms for the fractional calculus: A selection of numerical methods, Comput. Meth. Appl. Meeh. Engrg. 194 (2005) 743-773.
  • 5Y. Ding and H. Ye, A fractional-order differential equation model of HIV infection of CD4+ T-cells, Math. Comput. Model. 50 (2009) 386-392.
  • 6A. M. A. El-Sayed, A. E. M. El-Mesiry and H. A. A. El-Saka, On the fractional order logistic equation, Appl. Math. Lett. 20 (2007) 817-823.
  • 7V. S. Ertiirk and S. Momani, Solving systems of fractional differential equations using differential transform method, J. Comput. Appl. Math. 215 (2008) 142-15l.
  • 8V. S. Ertiirk, Z. M. Odibat and S. Momani, An approximate solution of a fractional order differential equation model of human T-celllymphotropic virus I(HTLVI) infection of CD4+ T-cells, Comput. Math. Appl. 62 (2011) 996-1002.
  • 9A. Cokdogan, A. Yildmm and M. Merdan, Solving a fractional order model of HIV infection of CD4+ T-cells, Math. Comput. Model. 54 (2011) 2132-2138.
  • 10P. K. Gupta, Approximate analytical solutions of fractional Benney-Lin equation by reduced differential transform method and the homotopy perturbation method, Comput. Math. Appl. 61(9) (2011) 2829-2842.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部