期刊文献+

不同壳层厚度Au@SiO_2的表面增强拉曼效应

Surface Enhanced Raman Scattering of Au@SiO_2 Nanoparticles with Different Shell Thicknesses
原文传递
导出
摘要 通过电偶置换反应制备了尺寸在30~35 nm的结晶性良好的Au纳米颗粒,并成功在其表面包覆了不同厚度的Si O2壳层,利用TEM、HRTEM和UV-Vis对样品的结构和形貌进行了表征,并以罗丹明6G(R6G)为探针分子,对Au@SiO_2复合粒子的表面增强拉曼散射(SERS)效应进行了研究。结果显示,相对于Au纳米颗粒,Au@SiO_2复合粒子显著提高了拉曼信号的质量和检测的灵敏度,且Si O2壳层厚度对其SRES效应影响显著,壳层厚度为2 nm的复合粒子对R6G分子的检测极限可达10^(-7)mol/L。 Well-crystallized Au nanoparticles with average sizes of 30-35 nm were prepared through Galvanic replacement, and subsequently the Au@SiO2 composite particles with different silica shell thicknesses were synthesized. The microstructures and morphologies of the Au@SiO2 nanoparticles were also characterized using UV-Vis, TEM and HRTEM. The Rhodamine 6G(R6G) dye was selected as probe molecules to evaluate the SERS(surface enhanced Raman scattering) effect of Au@SiO2 nanoparticles with various shell thicknesses. The results show that SERS signal intensity and quality of the R6 G molecules are obviously improved as compared with Au NPs synthesized using the same method. Furthermore, the SiO2 shell thickness has a significant influence on the SERS activity. The highest SERS effect is obtained when using Au@SiO2 nanoparticles with shell thickness of 2 nm with an extremely low detection limit of 10^-7 mol/L.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2016年第4期1067-1071,共5页 Rare Metal Materials and Engineering
基金 国家自然科学基金(50702037) 上海市自然科学基金(13ZR1444200) 中央高校基本科研业务费专项基金
关键词 二氧化硅 壳层结构 表面增强拉曼散射 Au SiO2 core-shell structure surface-enhancement Raman scattering
  • 相关文献

参考文献16

  • 1Campion A, Kambhampati P. Chem Soc Rew[J], 1998, 27(4): 241.
  • 2Wei S C, Hsu P H, Lee Y F et al. ACS Appl Mater Interfaces[J], 2012, 4(5): 2652.
  • 3Pei H, Li F, Wan Yet al. JAm Chem Soc[J], 2012, 134(29): 11 876.
  • 4Green I X, Tang W, Neurock Met al. JAm Chem Soc[J], 2012,134(33): 13 569.
  • 5Ouyen T T B, Su W N, Chen K Jet al. JRaman Spectrosc[J], 2013, 44(12): 1671.
  • 6Fernand D, Pardanaud C, Berg-Lefranc D et al. JPhys Chem C[J], 2014, 118(28): 15 308.
  • 7Tran Thi Bich Q, Chang C C, Su W N et al. J Mater Chem B[J], 2014, 2(6): 629.
  • 8PengJucun(彭菊村)WuBoying(吴波英),ChenJie(陈杰).稀有金属材料与工程[J],2008,37(3):504.
  • 9毛然然,赵爱武,陶文玉,甘自保,刘二虎.Au@SiO_2纳米粒子的制备及其用于西维因的检测[J].光谱实验室,2013,30(5):2512-2516. 被引量:2
  • 10Chang C C, Yang K H, Liu Y C et al. ACS Appl Mater Interfaces[J], 2012, 4(9): 4700.

二级参考文献41

  • 1刘宁,肖白曼,张剑峰.HPLC法测定食品中非食用色素酸性橙II[J].中国民康医学,2006,18(4):104-105. 被引量:19
  • 2邹陆军,张兆春.结晶紫在纳米磷化镓粉体表面吸附的表面增强拉曼光谱分析[J].光谱实验室,2007,24(5):832-835. 被引量:2
  • 3Dasary S S R, Singh A K, Senapati D et al. Gold Nanoparticle Based Label-Free SERS Probe for Uhrasensitive and Selective Detection of Trinitrotoluene[J]. Journal of the American Chemal Soc&t y , 2009,131(38):13806-13812.
  • 4Tian Z Q, Ren B,Wu D Y. Surface-enhanced Raman Scattering:From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures[J]. Journal of Physical Chemistry B, 2002,106 (37) : 9463-9483.
  • 5Hayazawa N, Inouye Y, Sekkat Z et al. Metallized Tip Amplification of Near-field Raman Seattering[-J]. Optics Communications, 2000,183 (4) : 333-336.
  • 6Li J F, Huang Y F, Ding Y et al. Shell-isolated Nanopartiele-enhanced Raman Spectroscopy [J]. Nature, 2010, 464 (7287): 392-395.
  • 7中华人民共和国国家标准.食品中西雏因最大残留限量标准[S].GB14971-94.北京:人民卫生出版社,2001.
  • 8Graf C, Vossen D L J,Imhof Aet al. A General Method to Coat Colloidal Particles with Silica[J]. Langmu,2003,19(17): 6693-6700.
  • 9Frens G,Controlled Nucleation for Regulation of Particle-Size in Monodisperse Gold Suspensions[J].Nure-PhysalSc&nce, 1973,241(105):20-22.
  • 10Han X M, Wang H, Ou X Met al. Highly Sensitive, Reproducible, and Stable SERS Sensors Based on Well-controlled Silver Nanoparticle-decorated Silicon Nanowire Building Blocks[J]. Journal of Materials Chemistry, 2012,22(28) :14127-14132.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部