期刊文献+

扁管换热器内纵向涡强度与换热强度对应关系 被引量:8

Relationship between longitudinal vortex intensity and heat transfer intensity of flat tube heat exchanger
下载PDF
导出
摘要 纵向涡强化传热技术在管翅式换热器中得到了广泛的应用。但是一直以来对纵向涡强化传热的研究主要停留在涡产生器结构参数及布置方式对换热的影响方面,文献对纵向涡强度与换热强度之间定量关系的研究鲜有报道。建立了采用纵向涡强化传热的扁管管翅换热器数值模型,采用二次流强度参数Se分析了翅片及涡产生器结构参数变化时,通道内纵向涡强度与换热强度之间的定量关系;并定量分析了通道中涡产生器引起的纵向涡强度增量与传热强化量之间的定量关系。结果表明:翅片及涡产生器结构参数变化时,Nu、Se与Re之间,以及阻力系数f与Re及Se之间均不存在定量对应关系,但Se与Nu以及?Se与?Nu之间存在对应关系。这表明,在布置有纵向涡产生器的扁管管翅换热器翅侧通道内,纵向涡强度决定了通道内的换热强度。 The longitudinal vortices can potentially enhance heat transfer with small pressure loss penalty. Vortex generators(VGs) which can generate longitudinal vortices are widely used in fin-and-tube heat exchangers for heat transfer enhancement. But for a long time, researches are carried out focusing on the effect of the shape and parameters of VGs on heat transfer and the relationship between the longitudinal vortices intensity and heat transfer intensity is analyzed qualitatively. The quantitative relationship between the longitudinal vortices intensity and heat transfer intensity is seldom reported. Longitudinal vortex is a typical secondary flow, and thus the longitudinal vortex intensity can be defined using the secondary flow intensity parameter. In this paper, the numerical models of flat tube bank fin heat exchanger with VGs mounted on the fin surfaces are studied for different fin and VGs parameters. The longitudinal vortices intensity is quantitatively defined using the nondimensional secondary flow intensity parameter Se. The relationship between the longitudinal vortices intensity and the heat transfer intensity and that between the increment values of Se and Nu caused by the longitudinal vortices are quantitatively studied. The results show that there is no corresponding relationships neither between Nu and Re, nor between Se and Re. Similarly, no linear relationship exists between the friction factor f and the values of Re and Se. But the corresponding relationship exists not only between Se and Nu but also △Se and △Nu. The longitudinal vortices intensity determines the heat transfer intensity in the flat tube fin heat exchanger.
出处 《化工学报》 EI CAS CSCD 北大核心 2016年第5期1858-1867,共10页 CIESC Journal
基金 国家自然科学基金项目(51366008,51376086) 甘肃省杰出青年基金项目(145RJDA324)
关键词 涡产生器 纵向涡强度 换热强度 定量关系 传热 数值分析 vortex generator longitudinal vortices intensity heat transfer intensity quantitative relationship heat transfer numerical analysis
  • 相关文献

参考文献5

二级参考文献56

  • 1宋克伟,常立民,王良璧.涡干涉的流动显示与数值模拟[J].兰州交通大学学报,2005,24(6):10-13. 被引量:2
  • 2汪健生,汤俊洁,张金凤.半椭圆涡流发生器强化换热机理[J].机械工程学报,2006,42(5):160-164. 被引量:19
  • 3宋文吉,申洁,李庆领.矩形纵向涡发生器平板强化换热的实验研究[J].化工机械,2006,33(3):133-136. 被引量:1
  • 4吴小林,熊至宜,姬忠礼,时铭显.旋风分离器旋进涡核的数值模拟[J].化工学报,2007,58(2):383-390. 被引量:60
  • 5Fiebig M, Valencia A, Mitra N K. Wing-type vortex generators for fin-and-tube heat exchangers [J]. Experimental Thermal and Fluid Science, 1993, 7 (4): 287-295.
  • 6Biswas G, Mitra N K, Fiebig M. Heat transfer enhancement in fin-tube heat exchangers by winglet type vortex generators[J]. International Journal of Heat and Mass Transfer, 1994, 37 (2) : 283-291.
  • 7Fiebig M. Vortex generators for compact heat exchangers[J]. Journal of Enhanced Heat Transfer, 1995, 2 (1/ 2) : 43-61.
  • 8Jacobi A M, Shah R K. Heat transfer surface enhancement through the use of longitudinal vortices -- a review of recent progress [J]. Experimental Thermal and Fluid Science, 1995, 11 (3):295-309.
  • 9Gentry M C, Jacobi A M. Heat transfer enhancement by delta wing vortex generators on a flat plate: vortex interactions with the boundary layer [J]. Experimental Thermal and Fluid Science, 1997, 14 (3): 231-242.
  • 10Nakabe K, Inaoka K, Ai T, et al. Flow visualization of longitudinal vortices induced by an inclined impinging jet in a crossflow- effective cooling of high temperature gas turbine blades [J]. Energy Conversion and Management, 1997, 38 (10/11/12/13) : 1145-1153.

共引文献66

同被引文献41

引证文献8

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部