期刊文献+

Survey of plasmonic gaps tuned at sub-nanometer scale in self-assembled arrays

Survey of plasmonic gaps tuned at sub-nanometer scale in self-assembled arrays
原文传递
导出
摘要 Creating nanoscale and sub-nanometer gaps between noble metal nanoparticles is critical for the applications of plasmonics and nanophotonics. To realize simultaneous attainments of both the op- tical spectrum and the gap size, the ability to tune these nanoscale gaps at the sub-nanometer scale is particularly desirable. Many nanofabrication methodologies, including electron beam lithography, self-assembly, and focused ion beams, have been tested for creating nanoscale gaps that can de- liver significant field enhancement. Here, we survey recent progress in both the reliable creation of nanoscale gaps in nanoparticle arrays using self-assemblies and in the in-situ tuning techniques at the sub-nanometer scale. Precisely tunable gaps, as we expect, will be good candidates for future investigations of surface-enhanced Raman scattering, non-linear optics, and quantum plasmonics. Creating nanoscale and sub-nanometer gaps between noble metal nanoparticles is critical for the applications of plasmonics and nanophotonics. To realize simultaneous attainments of both the op- tical spectrum and the gap size, the ability to tune these nanoscale gaps at the sub-nanometer scale is particularly desirable. Many nanofabrication methodologies, including electron beam lithography, self-assembly, and focused ion beams, have been tested for creating nanoscale gaps that can de- liver significant field enhancement. Here, we survey recent progress in both the reliable creation of nanoscale gaps in nanoparticle arrays using self-assemblies and in the in-situ tuning techniques at the sub-nanometer scale. Precisely tunable gaps, as we expect, will be good candidates for future investigations of surface-enhanced Raman scattering, non-linear optics, and quantum plasmonics.
出处 《Frontiers of physics》 SCIE CSCD 2016年第2期57-65,共9页 物理学前沿(英文版)
关键词 surface plasmon tunable plasmonic gap quantum plasmon surface-enhanced Raman scattering SELF-ASSEMBLY nanoparticle array surface plasmon, tunable, plasmonic gap, quantum plasmon, surface-enhanced Raman scattering, self-assembly, nanoparticle array
  • 相关文献

参考文献2

二级参考文献27

  • 1L. Xia, S. Yin, H. Gao, Q. Deng, and C. Du, Sensitivity en- hancement for surface plasmon resonance imaging biosensor by utilizing gold-silver bimetallic film configuration, Plas- monics, 2011, 6(2): 245.
  • 2C. Li, L. Xia, H. Gao, R. Shi, C. Sun, H. Shi, and C. Du, Broadband absorption enhancement in a-Si:H thin-film solar cells sandwiched by pyramidal nanostructured arrays, Opt. Express, 2012, 20($5): A589.
  • 3A. E. Grow, L. L. Wood, J. L. Claycomb, and P. A. Thompson, New biochip technology for label-free detection of pathogens and their toxins, J. Microbiol. Methods, 2003, 53(2): 2213.
  • 4L. Yang, L. Ma, G. Chen, J. Liu, and Z. Tian, Ultrasensitive SERS detection of TNT by imprinting molecular recogni- tion using a new type of stable substrate, Chemistry, 2010, 16(42): 12683.
  • 5X. T. Wang, W. S. Shi, G. W. She, L. X. Mu, and S. T. Lee, High-performance surface-enhanced Raman scattering sen- sors based on Ag nanoparticles-coated Si nanowire arrays for quantitative detection of pesticides, Appl. Phys. Lett., 2010, 96(5): 053104.
  • 6M. Mulvihill, A. Tao, K. Benjauthrit, J. Arnold, and P. Yang, Surface=enhanced Raman spectroscopy for trace ar- senic detection in contaminated water, Angew. Chem., 2008, 120(34): 6556.
  • 7A. Campion and P. Kambhampati, Surface-enhanced Raman scattering, Chem. Soc. Rev., 1998, 27(4): 241.
  • 8Hongxing Xu, E. J. Bjerneld, M. Kall, and L. BSrjesson, Spectroscopy of single hemoglobin molecules by surface em hanced Raman scattering, Phys. Rev. Lett., 1999, 83(21): 4357.
  • 9K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, Detec- tion and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS), Phys. Rev. E, 1998, 57(6): R6281.
  • 10L. Xia, Z. Yang, S. Yin, W. Guo, S. Li, W. Xie, D. Huang, Q. Deng, H. Shi, H. Cui, and C. Du, Surface enhanced Raman scattering substrate with metallic nanogap array fabricated by etching the assembled polystyrene spheres array, Opt. Express, 2013, 21(9): 11349.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部