期刊文献+

组合字典下超宽带穿墙雷达自适应稀疏成像方法 被引量:10

Adaptive Sparse Imaging Approach for Ultra-wideband Throughthe-wall Radar in Combined Dictionaries
下载PDF
导出
摘要 针对现有超宽带穿墙雷达稀疏成像算法大多只采用点目标稀疏基表示模型和稀疏优化的正则化参数不能被自适应调整以及目标位置不在划分网格上带来虚假像的问题,该文提出一种基于贝叶斯证据框架的自适应稀疏成像方法。该方法首先利用组合字典独立稀疏表示场景中的点目标和扩展目标,然后在建立的偏离网格稀疏表示模型的基础上分层最大化各参数的似然函数,用第1层推理结合共轭梯度算法估计组合字典的各稀疏表示系数,用第2层推理估计正则化参数和目标的偏离网格量,最终通过迭代优化参数的设置得到问题的求解。仿真和实验结果表明,该方法不仅同时自适应增强穿墙场景中的点目标和扩展目标,还消除了偏离网格目标引起的虚假像。 The existing algorithms of ultra-wideband through-the-wall radar sparse imaging mostly adopt point target model. Also the regularization parameter of sparse optimization can not be adjusted adaptively, and the ghost imaging can be produced if the targets are not positioned at the pre-discretized grid location. To deal with the above issues, an adaptive sparse imaging algorithm based on Bayesian evidence framework is proposed, which represents sparsely the scene with the point targets and the extended targets by combination of appropriate dictionaries, and maximizes hierarchically the likelihood function of all parameters as well. The first-level inference of the Bayesian, combined with conjugate gradient algorithm, is adopted to estimate the sparse representation coefficients of the combined dictionaries. The second-level inference of the Bayesian is adopted to estimate the regularization parameter as well as the targets' off-grid shifts. Therefore, the problem can be solved through iterative optimizating the parameter setting. The simulation and experimental results show that the proposed method can not only adaptively enhance the characteristics of both the point targets and the extended targets, but also mitigate ghosts caused by off-grid targets.
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第5期1047-1054,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61461012) 广西区自然科学基金(2013GXNSFAA019329 2013GXNSFAA019004) 认知无线电与信息处理教育部重点实验室2015主任基金项目(CRKL150107)~~
关键词 超宽带穿墙雷达稀疏成像 组合字典 证据框架 参数自适应调整 Ultra-wideband through-the-wall radar sparse imaging Combined dictionaries Evidence framework Adaptive adjustment of parameters
  • 相关文献

参考文献15

  • 1LI G and BURKHOLDER R J. Hybrid matching pursuit for distributed through-wall radar imaging[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(4):17 01-1711. doi: 10.1109/TAP.2015.2398115.
  • 2TIVIVE F H C, BOUZERDOUM A, and AMIN M G. A subspace projection approach for wall clutter mitigation in through-the-wall radar imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2108-2122. doi: 10.1109/TGRS.2014.2355211.
  • 3JIA Yong, CUI Guolong, KONG Lingjiang, et al. Multichannel and multiview imaging approach to building layout determination of through-wall radar[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(5): 970-974. doi: 10.1109/LGRS.2013.2283778.
  • 4AMIN M G and AHMAD F. Change detection analysis of human moving behind walls[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3): 1410-1425.
  • 5WU Qisong, ZHANG Y D, AHMAD F, et al. Compressive sensing based high-resolution polarimetic through-the-wall radar imaging exploiting taget characteristics[J]. IEEE Antennas and Wireless Progagation Letters, 2014, 99: 1-4. doi: 10.1109/LAWP.2014.238087.
  • 6XIA Shugao and LIU Fengshan. Off-gird compressive sensing through-the-wall radar imaging[J]. Proceedings of SPIE, 2014, 9077: 90771F-1-8.
  • 7晋良念,钱玉彬,刘庆华,欧阳缮.超宽带穿墙雷达偏离网格目标稀疏成像方法[J].仪器仪表学报,2015,36(4):743-748. 被引量:10
  • 8BROWNE K E, BURKHOLDER R J, and VOLAKIS J L. Fast optimization of through-wall radar images via the method of lagrange multipliers[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(1): 320-328. doi: 10.1109/TAP.2012.2220321.
  • 9SAMADI S,?ETIN M, and MASNADI-SHIRAZI M A. Multiple feature-enhanced SAR imaging using sparsity in combined dictionaries[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 821-825. doi: 10.1109/LGRS. 2012.2225016.
  • 10LIU Hongchao, JIU Bo, LIU Hongwei, et al. An adaptive ISAR imaging method based on evidence framework[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(6): 1031-1035. doi: 10.1109/LGRS.2013.2281194.

二级参考文献10

  • 1Mallat S, Zhang Z. Matching pursuit with time-frequency dictionaries [J]. IEEE Trans on Signal Processing, 1993, 41 (12): 3397-3415.
  • 2Dettofi L, Semler L. A comparison of wavele4 fidgelet, and curvelet-based texture classifaction algorithms in computed tomography [J]. Computers in Biology and Medicine, 2007, 37(4): 486--498.
  • 3Huo X M. Sparse image representation via combined transforms [D]. Ph.D dissertation, Stanford University, Stanford, CA, 1999.
  • 4Starck J L, Elad M, L D, Donoho. Image decomposition via the combination of sparse representation and a variational approach [J]. IEEE Transactions on ImageProcessng, 2005, 14(10): 1570-1582.
  • 5Starck J L, Donoho D L, Candes E J. Very high quality image restoration by combining wavelets and curvelets [C]. Proceedings of SPIE, 2001: 9-19.
  • 6Elad M,Bruckstein A M. A generalized uncertainty principle and sparse representation in pairs of bases [J]. IEEE Trans. On Information Theory ,2002(48): 2558-2567.
  • 7孟升卫,黄琼,吴世有,陈洁,方广有.超宽带穿墙雷达动目标跟踪成像算法研究[J].仪器仪表学报,2010,31(3):500-506. 被引量:13
  • 8晋良念,欧阳缮,肖海林.基于尺度MMSE波束的超宽带穿墙成像方法[J].仪器仪表学报,2012,33(3):537-542. 被引量:2
  • 9罗堪,李建清,王志刚,蔡志鹏.心电压缩感知恢复先验块稀疏贝叶斯学习算法[J].仪器仪表学报,2014,35(8):1883-1889. 被引量:7
  • 10苏伍各,王宏强,邓彬,秦玉亮,刘天鹏.基于稀疏贝叶斯方法的脉间捷变频ISAR成像技术研究[J].电子与信息学报,2015,37(1):1-8. 被引量:7

共引文献12

同被引文献12

引证文献10

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部