期刊文献+

分布式智能交通网络流量预测与控制系统 被引量:7

Monitor and Control System of Distributed Intelligent Traffic Network Flows
原文传递
导出
摘要 建立了一套分布式智能交通网络控制系统。该系统采用multi-agent技术构建交通网络的车流量预警机制和控制机制。该机制利用拉普拉斯矩阵的收敛性,将车流量均衡的分配给各条道路,从而缓解道路资源分配不合理所造成的交通阻塞。系统中的agent仅需要和相邻路口的agent交换少量的信息就可以实现分布式控制。而且每个智能agent可以实时的预测整个交通网络车流量变化,并快速调整路网中各条道路的车流量。这种分布式的控制方式不但提高了智能交通系统的鲁棒性和延展性,而且降低了建设成本。本文采用理论分析以及模拟实验等方式来测试系统性能,并通过车流量和车速等参数衡量系统的稳定性和灵活性。 This paper presents a distributed traffic control system.Multi-agent technology will be applied to build the intelligent traffic network.The system utilizes convergences of Laplacian matrix to evenly distribute road resource to the vehicles.The intelligent agents can instantly adjust their control strategy according to predicted traffic index.As a distributed system,the intelligent traffic control system do not need any central control.The agents can cooperatively achieve distributed control rely on information from neighbors.The performance of the system is tested via simulation and different parameters.The results demonstrate that the system is flexible,reliable and feasible for practical uses.
作者 王宗尧
出处 《系统工程》 CSSCI CSCD 北大核心 2016年第3期101-110,共10页 Systems Engineering
基金 教育部人文社会科学研究青年基金资助项目(12YJCZH211) 国家自然科学基金青年科学基金资助项目(61304180) 国家自然科学基金面上项目(71272052)
关键词 交通控制 智能交通 图论 分布式系统 Traffic Control Intelligent Traffic Graph Theory Distributed System
  • 相关文献

参考文献18

  • 1Abdoosa M, Mozayania N, Bazzanb A L C. Holonic multi-agent system for traffic signals control [J]. Engineering Applications of Artificial Intelligence, 2013, (26) : 1575- 1587.
  • 2Bi Y, Srinivasan D, Lu X, Sun Z, Zeng W. Type-2 fuzzy multi-intersection traffic signal control with differential evolutionoptimization[J]. Expert Systems with Applications, 2014, (41) : 7338 - 7349.
  • 3Balaji P G, Srinivasan D. Type-2 fuzzy logic based urban traffic management [J]. Engineering Applications of Artificial Intelligence, 2011, (24) : 12-22.
  • 4Gregoire P,Desjardins C, Laumonier J,Chaib-draa B. Urban traffic control based on learningagents[J]. IEEE Intelligent Transportation Systems Conference, 2007 : 916- 921.
  • 5Weiring M. Multi-agent reinforcement learning for traffic lightcontrol [C] // Proceedings of the 7th International Conference on Machine Learning, 2000:1151-1158.
  • 6Chen B, Cheng H. A review of the applications of agent technology in traffic and transportation systems [J]. IEEE Trans. on Intelligence Transport Systems, 2010, (2) : 485-497.
  • 7Roozemond D A. Using intelligent agents for pro- active, real-time urban intersection control [J]. European Journal of Operational Research, 2001, (2) :293-301.
  • 8Cai C, Yang Z. Study on urban traffic management based on multi-agent system[C]//IEEE Proceedings of the 6th International Conference on Machine Learning and Cybernetics, 2007 : 25- 29.
  • 9Choy M, Srinivasan D, Cheu R. Cooperative hybrid agent architecture for real-time traffic signal control [J]. IEEE Trans. on System Man and Cybernetics, Part A: System and Humans,2003, (5) : 597-607.
  • 10Srinivasan D, Choy M, Cheu R. Neural networks for real-time traffic signal control[J]. IEEE Trans. on Intelligence Transport Ssystems, 2006, (3) : 261 -272.

同被引文献31

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部