期刊文献+

插电式混合动力汽车动力系统的成本、油耗和排放多目标参数优化 被引量:13

Cost,Fuel Consumption and Emission Multi-objective Parameter Optimization for the Powertrain of a Plug-in HEV
下载PDF
导出
摘要 动力系统部件参数与控制策略参数相互耦合,共同影响整车的动力性能、经济性和排放性能。本文旨在对某一插电式混合动力汽车的动力系统进行成本、油耗和排放多目标参数优化。首先提出使整车动力系统效率最优为目标的瞬时能量管理控制策略,然后以最小化动力系统成本、考虑发动机热状况的油耗和排放为优化目标,采用多目标遗传算法对动力系统部件参数和控制参数进行同时优化,从而获得该优化问题的Pareto最优解集。结果表明:与原始车型相比,除了个别方案NOx略有增加外,Pareto最优解集所对应的燃油经济性和排放性能都有明显提高。同时Pareto解集提供了多组可行的参数优化方案,设计人员可以根据对动力系统成本、燃油经济性和排放的重视程度不同而选择所需的参数组合。 The component parameters of powertrain and the parameters of control strategy are coupled each other, and they affect the power performance, fuel economy and emission together. This paper aims to con- duct a multi-objective optimization on the power performance, fuel economy and emission of the powertrain in a plug-in HEV. Firstly, a transient energy management control strategy is presented for optimizing the efficiency of powertrain. Then with minimizing the cost, fuel consumption with consideration of engine thermal state and emis- sion as optimization objectives, the component parameters of powertrain and the parameters of control strategy are concurrently optimized by using multi-objective genetic algorithm with a Pareto optimal solution set obtained. The results show that compared with original vehicle, the fuel consumption and emission performances of the vehicle corresponding to Pareto solution set are all obviously improved, except a few solutions having a slight increase in NOx emission. In addition, Pareto solution set provide many optimal schemes of feasible parameter combinations, and the designers can select the parameter combination they desire based on their preferences among cost, fuel e- conomy and emission.
出处 《汽车工程》 EI CSCD 北大核心 2016年第4期397-402,434,共7页 Automotive Engineering
基金 国家863计划项目(2013BAG12B01) 重庆市基础与前沿研究计划杰青项目(cstc2013jcyjjq60002)资助
关键词 插电式混合动力汽车 动力系统 成本 油耗 排放 多目标参数优化 plug-in HEV powertrain cost fuel consumption emission multi-objective parameter op-timization
  • 相关文献

参考文献13

  • 1RYAN F, NESTOR M,PANOS P,et al. Optimal Design of Automo- tive Hybrid Powertrain Systems [ C ]. Proceedings of EcoDesign 99- First Int. Symp. On Environmentally Conscious Design and Inverse Manufacturing, 1999.
  • 2FISH S, TROY B. Simulation-based Optimal Sizing of Hybrid Elec- tric Vehicle Components for Specific Combat Missions [ J ]. IEEE Transactions on Magnetics ,2001,37 ( 1 ) :485 -488.
  • 3HUANG Bufu, WANG Zhancheng ,XU Yangsheng. Multi-objective Genetic Algorithm for Hybrid Electric Vehicle Parameter Optimiza- tion[C]. Intelligen Robots and Systems, 2006 IEEE/RSJ Interna- tional Conference on. IEEE,2006.
  • 4BOEHME T, et al. Multi-Objective Optimal Design of Parallel Plug- In Hybrid Powertrain Configurations with Respect to Fuel Consump- tion and Driving Performance [ C ]. SAE Paper 2014-01 - 1158.
  • 5张昕,宋建峰,田毅,张欣.基于多目标遗传算法的混合动力电动汽车控制策略优化[J].机械工程学报,2009,45(2):36-40. 被引量:42
  • 6MARKEL T, WIPKE K, et al. Vehicle System hnpacts of Fuel Cell System Power Response Capability [ C ]. SAE Paper 2002-01 - 1959.
  • 7WIPKE K, MARKEL T, NELSON D. Optimizing Energy Manage- ment Strategy and Degree of Hybridization for a Hydrogen Fuel Cell SUV [ C ]. Proceedings of 18th Electric Vehicle Symposium ,2001.
  • 8王润才,何仁,俞剑波,胡春花.基于遗传算法的插电式串联混合动力汽车动力参数优化[J].中国机械工程,2013,24(18):2544-2549. 被引量:24
  • 9NG K S, MOO Chin Sien , CHEN Yiping , et al. Enhanced Cou- lomb Counting Method for Estimating State-of-charge and State-of- health of Lithium-ion Batteries[J ]. Applied Energy ,2009,86 (9) :1506-1511.
  • 10GRAHAM R, et al. Comparing Benefits and Impacts of Hybrid E- lectric Vehicle Options[R]. EPRI, Palo Alto, CA: 1000349, 2001.

二级参考文献45

  • 1陈志翔,殷树言,卢振洋.基于遗传模拟退火算法的弧焊机器人系统协调路径规划[J].机械工程学报,2005,41(2):194-198. 被引量:12
  • 2浦金欢,殷承良,张建武.遗传算法在混合动力汽车控制策略优化中的应用[J].中国机械工程,2005,16(7):648-652. 被引量:37
  • 3张鹏,黎志照.串联式混合动力电动汽车功率参数的优化匹配[J].机械制造,2005,43(9):36-37. 被引量:3
  • 4张欣,刘溧,于海生.混合动力电动汽车制动系统回馈特性仿真[J].中国公路学报,2006,19(3):111-116. 被引量:15
  • 5刘磊,刚宪约,王树凤,柴山.汽车仿真软件ADVISOR[J].农业装备与车辆工程,2007,45(2):40-43. 被引量:30
  • 6Fang Licun, Qin Shiyin. Concurrent Optimization for Parameters of Powearain and Control System of Hybrid Electric Vehicle Based on Multi-Objective Genetic Algorithms [ C ]//SICE-ICASE International Joint Conference 2006. Bexco, Korea, Oct 2006.
  • 7Gakdi V, Ippolite L, Piccolo A, et al. Evaluation of Emissions Influence on Hybrid Electric Vehicles Sizing[ C]//Process Of International Conference on Power Electronics, Electrical Drives, Advanced Machines and Power Quality (SPEEDAM2000), 2000 (A4) :1 -7.
  • 8Gao Wenzhong, Porandla S K. Design Optimization of a Parallel Hybrid Electric Powertrain [ C]//IEEE Conference on Vehicle Power and Propulsion ,2005:530 - 535.
  • 9Wang Zhancheng, Li Weimin. Optimization of Series Hybrid Electric Vehicle Operational Parameters By Simulated Annealing Algorithm[ C]//2007 IEEE International Conference on Control and Automation, Guangzhou, CHINA, May 30 to June 1,2007.
  • 10Huang Bnfu, Wang Zhancheng, Xu Yangsheng. Multi-Objective Genetic Algorithm for Hybrid Electric Vehicle Parameter Optimization [ C ]//Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, October 2006.

共引文献105

同被引文献121

引证文献13

二级引证文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部