期刊文献+

基于混合核函数BDK的支持向量机遥感图像分类

The remote sensing image classification based on the mixed kernel function BDK of support vector machine
下载PDF
导出
摘要 以支持向量机关键部分核数的有效选定作为探究目标,从核函数选取规则着手,将遥感数据领域知识嵌入到核函数构造问题中,结合遥感数据本身特征提出一种能同时兼顾到样本亮度差异性和角度差异性的混合核函数选取方法,通过支持向量机传统核函数分类效果进行对比分析,表明混合核方法的有效性. The technology of remote sensing image classification , selection of classification rules and the selection of kernel function affect the classification accuracy among the samples . The key part of the support vector machine(SVM ) kernel function is effectively selection as exploration target rules from the selection of kernel function . The remote sensing data knowledge embedded in the kernel function structure problems ,combined with the feature of remote sensing data itself can put forward a kind of both samples to the brightness difference and angle difference of the mixed kernel function selection method . The kernel function of SVM and traditional SVM classification effect are analyzed to show the effectiveness of mixed kernel methods .
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2016年第3期49-56,共8页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(61363066) 新疆高校科研计划重点研究资助项目(XJEDU2014I043) 伊犁师范学院院级重点基金资助项目(2015YSZD04) 吉林省科技发展计划资助项目(20120302)
关键词 支持向量机 遥感数据 核函数 光谱 support vector machine remote sensing data kernel function spectrum
  • 相关文献

参考文献26

  • 1SERGE A, LUDOVIC R, YANNICK C, et al. A fuzzy-possibilistie scheme of study for obiects with indeterminate boundaries: application to French Polynesian reef scapes [J]. IEEE Transaction on Geoscience and Remote Sensing, 2000, :38(1) : 257.
  • 2YANG C, BRUZZONE L, SUN F Y, et al. Fuzzy statistics based affinity propagation technique for clustering in multis images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48 (6) : 2647.
  • 3骆继成,郭华东,史文中,等.遥感数据的不确定性问题[M].北京:科学出版社,2004.
  • 4YOUSSEF A M. An enhanced remote sensing procedure for material mapping in the western desert of Egypt: a tool for managing urban development [J]. Natural Resources Research, 2008, 17 (4) : 215.
  • 5PAN X, ZHANG S Q, ZHANG H Q. A variable precision rough set approach to the remote sensing land use/cover classification [ J ]. Computers & Geosciences, 2010, 36(14) : 66.
  • 6FOODY G M, MATHUR A. Toward intelligent training of supervised image classification: directing training data acquisition for SVM classification[J]. Remote Sensing of Environment, 2004, 93: 107.
  • 7DALPONTE M, BRUZZONE L, GIANELLE D. Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas [J]. 1EEE Transactions on Geoscience and Remote Sensing, 2008, 46(5): 1416.
  • 8刘伟强,胡静,夏德深.基于核空间的多光谱遥感图像分类方法[J].国土资源遥感,2002,14(3):44-47. 被引量:9
  • 9杨志民,刘广利.不确定性支持向量机[M].北京:科学出版社,2007:57-63.
  • 10MELGANI F, BRUZZONE L. Classification of hyperspeetral remote sensing images with support vector machines [J]. IEEE Transactions" Geoscience and Rernote Sensing, 2004, 42(8): 1778.

二级参考文献3

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部