摘要
为调查嵌入式轨道的槽型轨焊接不平顺的安全控制限值及焊接不平顺现代对有轨电车及嵌入式轨道动力作用的影响,建立现代有轨电车/嵌入式轨道耦合动力学模型。计算模型中,现代有轨电车简化为多刚体动力系统,嵌入式槽型轨被视为连续弹性支承基础上的Timoshenko梁,整体道床用三维实体有限元单元模拟,钢轨填充材料用三维粘弹性弹簧-阻尼单元模拟,嵌入式道床板底部的致密混凝土底座及路基简化为等效的弹簧-阻尼单元。基于动力学仿真计算,以GB5599-1985规定的车辆动力学性能指标为评定准则,对槽型轨焊接不平顺的安全限值进行详细分析。计算结果表明,对于短波波长小于0.2 m的焊接不平顺,1 m范围内槽型轨轨顶面容差的建议控制限值为0.2 mm;对于短波波长大于0.2 m的焊接不平顺,1 m范围内槽型轨轨顶面容差的建议控制限值为0.3 mm。
In order to investigate in the safety criterion of rail welding irregularities on the embedded rail track and its effects on the dynamics of tram and embedded rail track, a coupling tram vehicle-embedded rail track dynamic model is established. In this model, the tram vehicle is simplified as a multi-rigid-body system with nonlinear suspension characteristics, the grooved rail are modelled as Timoshenko beams with continuous support, while the slabs are modelled with 3D solid finite elements, the filling material that connects the rail and slabs and the elastic subgrade beneath the slabs are assumed to be uniformly viscoelastic elements. The detailed dynamics simulation makes an investigation into the safety criterion of rail welding irregularities on theembedded rail track based on the national railway vehicle dynamics standards (GB5599 - 85). The numerical analysis shows that the safety limit value of the grooved rail welding irregularities is 0.2 mm in lm when its wavelength is less than 0.2 m, and the safety limit value is 0.3 mm when its wavelength ranges from 0.2 m to 1 m.
出处
《城市轨道交通研究》
北大核心
2016年第5期30-34,39,共6页
Urban Mass Transit
基金
中央高校基本科研业务资助(2682013BR009)