期刊文献+

地物空间关系匹配的高分辨率遥感影像检索 被引量:3

High-resolution remote sensing image retrieval via land-feature spatial relation matching
原文传递
导出
摘要 从低层视觉特征与地物空间关系特征对影像内容进行描述,建立检索模板与目标影像间的相似性直方图表达,提出一种适用于高分辨率遥感影像检索的新方法。首先,利用Quin+树将大幅面原始遥感影像分解为一系列同尺寸的序列子块;然后,分别提取各子块的低层视觉特征与地物关系特征,并以子块为基元构建候选子块的特征直方图;最后,对比检索模板与候选子块间的特征直方图相似性,实现高分辨率遥感影像的检索。使用多幅多源高分辨率遥感影像进行实验,结果表明本文方法对耕地、水系、建筑物等地类的检索精度大都维持在0.8以上,且各项检索性能指标均优于已有的两种遥感图像检索算法。 Image retrieval is a key technology for data acquisition and knowledge transformation under the background of remote sensing data. Remote sensing images with high spatial resolution provide Object details and diverse structures of land features, thereby making dif- ferences in local visual feature as evident. Most existing retrieval methods represent and model image contents on the basis of low-level visual features of the image, leading to limited retrieval performance of high-resolution remote sensing image. This paper presents a novel retrieval method for high-spatial resolution remote sensing image; the proposed method utilizes abundant information about the spatial distri- bution and structure of land features. In the proposed method, data on low-level visual features and land-feature relations are utilized to represent the content of remote sensing images. Firstly, Quin+ tree is used to decompose the original large-sized image into a feature block sequence with a fixed size. Low- level visual features and land-feature relation descriptions are then extracted from the corresponding feature block. Feature histograms for candidate blocks are constructed according to the descriptions of the feature blocks. In each feature block, low-level visual information is represented using color and texture histograms. Moreover, land-feature spatial relation information is modeled as Object~:lirection and cat- egory co-occurrence histograms. Finally, the similarity between the query template and all candidate blocks is determined according to the feature histograms. Candidate blocks with high similarity values are selected as the final retrieval results. Several high-resolution remote sensing images of QuickBird and ZY-3 are used in the experiments to confirm the effectiveness of the proposed method. Based on the retrieval results of the proposed method, the average retrieval precision of water, farmland, buildings, and other categories are higher than 0.75. In addition, the proposed method is compared with two typical CBIR methods. Quantitative evaluation indicates that the proposed method yields optimal results. The proposed method can significantly improve the retrieval performance because it considers the description of space relationship information among different land features.
出处 《遥感学报》 EI CSCD 北大核心 2016年第3期397-408,共12页 NATIONAL REMOTE SENSING BULLETIN
基金 国家重点基础研究发展计划(973计划)(编号:2012CB719906) 国家自然科学基金(编号:41201428) 测绘遥感信息工程国家重点实验室开放研究基金项目(编号:13R01) 地理国情监测国家测绘地理信息局重点实验室项目(编号:2014NGCM15) 对地观测技术国家测绘地理信息局重点实验室开放基金项目(编号:K201504) 中南大学中央高校基本科研业务费专项(编号:2014ZZTS250) 交通运输部科技项目(编号:2009353-344-570) 广东省交通运输厅科技项目(编号:2010-02-051)~~
关键词 遥感影像检索 Quin+树 空间伴生关系 空间方位关系 直方图匹配 Remote sensing image retrieval, Quin+ tree, Spatial symbiotic relation, Spatial direction relation, Histogram matching
  • 相关文献

参考文献8

二级参考文献59

共引文献328

同被引文献29

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部