期刊文献+

火电厂大气污染物排放预测模型 被引量:1

Predictive model of air pollutant emissions from thermal power plants
原文传递
导出
摘要 根据大气污染物排放浓度变化特点,将无偏GM(1,1)模型与神经网络模型组合,并以矩阵型输入方式替代传统的数列型数据输入方式,得到改进型灰色神经网络模型,称为UGMN模型。接着,采用烟囱入口烟气自动监控系统(CEMS)数据,将模型运用于贵州省某电厂白天及夜间两段时间段内大气污染物排放浓度的模拟与预测。研究结果表明UGMN模型预测精度较好,可以应用于火电厂大气污染物排放浓度预测。 Based on the variation characteristics of air pollutant concentrations,an improved grey neural network model,the UGMN model,was created by combining an unbiased GM( 1,1) model with a neural network model,using a matrix input mode instead of the traditional sequence data input method. The UGMN model was applied to the simulation and prediction of both daytime and nighttime air pollutant emissions from a power plant in Guizhou Province,China. Simulation data were gathered from a continuous emission monitoring system( CEMS) in the chimney inlet. The results showed that the UGMN model had a higher prediction accuracy,and the model could effectively be used for the prediction of air pollutant emissions from thermal power plants.
出处 《环境工程学报》 CAS CSCD 北大核心 2016年第5期2547-2550,共4页 Chinese Journal of Environmental Engineering
关键词 灰色神经网络 无偏GM(1 1) 火电厂大气污染 排放浓度预测 grey neural network unbiased GM(1 1) air pollution of thermal power plants emission concentration prediction
  • 相关文献

参考文献9

二级参考文献82

共引文献282

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部