期刊文献+

一种基于深度信息的人头检测方法 被引量:5

A Head Detection Method Based on Depth Information
下载PDF
导出
摘要 针对目前人头检测方法对光线变化敏感和易受阴影干扰的问题,提出了一种基于深度图像的人头检测方法。首先通过运动目标检测,得到运动人员所在区域;然后对该区域使用改进的立体匹配算法,该匹配算法对传统的WTA匹配算法进行改进,只对强纹理点进行匹配,对弱纹理点只进行视差验证,并根据三角投影原理计算出深度图。由于深度图中人员与周围场景的深度分布不同,根据深度分布将人头区域提取出来,得到候选区域,最后将候选区域经过形态学运算并根据区域轮廓的特征来判断是否为人头。实验结果表明:该方法在不同光线环境条件下的检测正确率为94%以上,误检测率仅为5.77%,检测精度高,对光线和阴影的抗干扰性良好,能够很好地适应复杂环境。 For the problem head detecting method is sensitive to changing light and vulnerable of shadow interference, a head detection method based on the depth map is proposed. Firstly, get moving target region by the moving target detection. Then a improved stereo matching algorithm is used to the target area, a matching algorithm based on the traditional WTA matching algorithm, we just need to match strong texture point by stereo matching algorithm, verify disparity of weak texture point and we can calculate the depth map. Because the depth distribution between people and surrounding scene is different in the depth map, we can extract the head region depend on the depth distribution, and then get candidate region through expansion and corrosion operation. Determine whether the region is the head with the characteristic of the head. Experimental results show that the method tested under different environmental conditions is 95.69%,error detection rate is 5.77%,high precision,strong anti-interference performance to light and shadow and ap-plicable to complex environment.
出处 《长春理工大学学报(自然科学版)》 2016年第2期107-111,115,共6页 Journal of Changchun University of Science and Technology(Natural Science Edition)
关键词 人头检测 运动目标检测 立体匹配 深度图 head detection moving target detection stereo matching depth map
  • 相关文献

参考文献8

二级参考文献63

  • 1邓世伟,袁保宗.基于数学形态学的深度图像分割[J].电子学报,1995,23(4):6-9. 被引量:22
  • 2王健,王孝通,徐晓刚,李博.基于梯度的随机Hough快速圆检测方法[J].计算机应用研究,2006,23(8):164-165. 被引量:17
  • 3陈华杰,韦巍.基于分级边缘方位场匹配的人脸特征定位[J].光电子.激光,2007,18(2):241-244. 被引量:2
  • 4孔令富,赵飞,赵逢达.腐蚀/膨胀算法在足球机器人视觉系统中的应用[J].计算机工程与应用,2007,43(24):200-202. 被引量:8
  • 5Illngworth J, Kittler J. A Survey of the Hough Transform[J]. Computer Vision, Graphics and Image Processing, 1988, 44(1): 87-116.
  • 6Xu Lei, Oja E. A New Curve Detection Method: Randomized Hough Transform(RHT)[J]. Pattern Recognition Letters, 1990, 11(5): 331-338.
  • 7Xu Lei, Oja E, Kultanen P. Randomized Hough Transform(RHT): Basic Mechanisms, Algorithms, and Computational Complexities[J]. CVGIP: Image Understanding, 1993, 57(2): 131-154.
  • 8Bartolini F,Cappellini V, Meeoeei A. Counting people getting in and out of a bus by real-time image-sequence processing[J]. Image and Vision Computing, 1994,12( 1 ) :36 - 41.
  • 9Zhang Xiao-wei, Sexton G. Automatic human head location for pedestrian counting [ A ]. In: Proceedings of Sixth International Conference on Image Processing and its Applications [ C ] , Dublin, German, 1997:535 - 540.
  • 10Lin Sheng-fuu, Chen Jaw-yeh Chao Hung-Xin. Estimation of number of people in crowded scenes using perspective transformation [ J ]. IEEE Transactions on Systems, Man and Cybernetics (Part A) ,2001, 31 ( 6 ) :645 - 654.

共引文献104

同被引文献21

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部