期刊文献+

中英文突发事件话题演化对比研究--以H7N9微博为例 被引量:4

A Comparative Study of Chinese and English Emergency Topics Evolution:Taking H7N9 Microblog as Example
原文传递
导出
摘要 文章从新浪微博和Twitter抓取突发事件语料,根据主题模型确定候选话题,通过对候选话题进行聚类确定更为合适的话题数,然后根据主题模型结果计算相邻时间片话题之间的相似度,在此基础上分析话题的演化,最终完成中英文话题演化的比较分析。文章针对H7N9微博的实证结果表明:新浪微博话题数目较多,话题面更为广泛;国内对H7N9禽流感事件的爆发反应更为强烈;两个平台在话题内容方面也存在一些差异;另外,两个平台话题演化的可视化结果可以描述H7N9禽流感事件新话题的产生、旧话题的消亡以及话题内容随时间的变化。 In this paper,the authors crawl unexpected event corpus from Sina Weibo and Twitter.Topic model are used to obtain candidate topics.According to the results of topics clustering,the authors will get appropriate topic number.Then,the authors calculate similarities between two neighbor topics according to time.Finally,the authors present comparative analysis of topic evolution between Chinese and English.The experimental results show that:comparing with corpora of Twitter,topic number is larger and topics are more extensive on corpora from Sina Weibo;there are more arguments in China to the outbreak of H7N9 and the topic content in Chinese and English is different;additionally,visualization of topic evolution on these two platforms can describe the emerging of new topics,the ending of old topics and the change of topic content over time.
作者 赵华 章成志
出处 《情报资料工作》 CSSCI 北大核心 2016年第3期19-27,共9页 Information and Documentation Services
基金 国家社会科学基金项目“在线社交网络中基于用户的知识组织模式研究”(编号:14BTQ033) 国家社会科学基金重点项目“大数据环境下社会舆情与决策支持方法体系研究”(编号:14AZD084) 江苏高校哲学社会科学重点研究基地“社会计算与舆情分析”(培育点)的研究成果之一
关键词 话题演化 突发事件舆情分析 社会化媒体 多语言信息处理 topic evolution unexpected event public opinion analysis social media multilingual information processing
  • 相关文献

参考文献25

  • 1中国互联网络信息中心.第36次中国互联网络发展状况统计报告[R/OL].[2015-06-01].http://www.cnnic.net.cn/h1.wfzyj/hlwxzbg,/.
  • 2Twitter Reports Second Quarter 2015 Results[R/OL].[2015-09- 01 ].http://files.shareholder.com/downloads/AMDA-2F526X/0xOx 841607/E35857E7-8984-48C1-A33B-15B62F72AOF7/2015_ Q2_Earnings_press_release.pdf.
  • 3万瑞数据.微博媒体特性及用户使用状况研究[EB/OL].[2010-09-06].http://wenku.baidu.eom/view/359de428915f804d2b16c165.html.
  • 4M-Khalifa H S, A1-Eidan R M.An experimental system for measuring the credibility of news content in Twitter[J].Intema- tional Journal of Web Information Systems, 2011,7(2): 130-151.
  • 5Thelwall M, Buckley K, Paltoglou G.Sentiment in Twitter events [J]Journal of the American Society for Information Science and Technology, 2011,62(2):406-418.
  • 6Murthy D, Longwell S A.Twitter and disasters: the uses of Twit- ter during the 2010 Pakistan floods [J].Information, Communi- cation & Society, 2013,16(6):837-855.
  • 7王晓光,袁毅,滕思琦.微博社区交流网络结构的实证分析[J].情报杂志,2011,30(2):199-202. 被引量:39
  • 8朱恒民,李青.面向话题衍生性的微博网络舆情传播模型研究[J].现代图书情报技术,2012(5):60-64. 被引量:63
  • 9Vieweg S, Hughes A L, Starbird K, et al.Microblogging during two natural hazards events: what twitter may contribute to situ- ational awareness[C].Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Atlanta, Georgia, USA. New York: ACM, 2010:1079-1088.
  • 10Mills A, Chen R, Lee J, et al.Web 2.0 emergency applications: how useful can Twitter be for emergency response?[J]Journal of Information Privacy and Security, 2009,5(3):3-26.

二级参考文献113

  • 1包卿,陈雄,朱华友,孙立峰,沈红.基于核心—边缘理论的地方产业群升级发展探讨[J].国土与自然资源研究,2005(3):3-5. 被引量:3
  • 2杨善林,李永森,胡笑旋,潘若愚.K-MEANS算法中的K值优化问题研究[J].系统工程理论与实践,2006,26(2):97-101. 被引量:191
  • 3刘毅.略论网络舆情的概念、特点、表达与传播[J].理论界,2007(1):11-12. 被引量:312
  • 4史春云,张捷,尤海梅,李东和,王艳.四川省旅游区域核心—边缘空间格局演变[J].地理学报,2007,62(6):631-639. 被引量:149
  • 5Thomas Hofmann. Probabilistic latent semantic indexing[C]//Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Berkeley, CA, USA, 1999,50-57.
  • 6David M. Blei, Andrew Y. Ng, Michael I. Jordan. Latent dirichlet allocation[J]. The Journal of Machine Learning Research,2003,3: 993-1022.
  • 7T. Griffiths,M. Steyvers. A probabilistic approach to semantic representation [C]//Proceedings of the 24th Annual Conference of the Congnitive Science Society. Mahwah, NJ : Erlbaum, 2002,381-386.
  • 8M. Steyvers,T. Griffiths. Probabilistic topic models In: T. Landauer, D. S. McNamara, S. Dennis, W Kintsch (Eds.), handbook of Latent Semantic Analysis[M]. Hillsdale, NJ.. Erlbaum. 2007.
  • 9X. Wang, A. McCallum. Topic over time: A non-mark ov continuous-time model of topical trends[C]//Pro ceedings of the 12th ACM SIGKDD International Con ference on Knowledge Discovery and Data Mining Philadelphia, PA, USA, 2006: 424-433.
  • 10D. HalI,D. Jurafsky,C. D. Manning. Studying the history of ideas using topic models[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Honolulu, Hawaii, 2008,363-371.

共引文献264

同被引文献29

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部