期刊文献+

香格里拉高山松天然林林分蓄积混合效应模型构建 被引量:6

Building Mixed Effects Model of Stand Volume of Nature Pinus densata Forest in Shangri-La
下载PDF
导出
摘要 以云南省香格里拉的高山松天然林为研究对象,构建林分蓄积的混合效应模型;引入林分、海拔等环境因子的影响,构建含环境因子的林分蓄积混合效应模型,所有模型均采用拟合指标和独立样本检验进行评价。结果表明:混合效应模型相对于一般回归模型在林分蓄积拟合中有较高较好的拟合效果;引入环境因子的混合效应模型的拟合效果比一般混合效应模型要好;其中,引入林分因子的混合效应模型拟合效果最好;从模型独立性检验来看,一般混合效应模型的预估精度最高,绝对平均相对误差最小;引入环境因子后,混合效应模型的总相对误差以及平均相对误差有所减小,其中又以引入林分因子的混合效应模型的误差最小,表现最佳;一般回归模型无论在误差方面还是在精度方面都与混合效应模型有很大差距。 In this paper, we took natural Pinus densata forest of Shangri-La City of Yunnan Province as the research object to establish a mixed effects model stand volume. At the same time, we construct the mixed effects models of stand volume which contain the environment factors, including stand factors and elevation etc. All models were estimated by indexes of fitting and Independent Samples Test. The results showed that compared with general regression model, the result of mixed effects model was better in stand volume fitting; The mixed effect model which introduced environment factors was better than the model which did not. And the best model was that used the stand factors. In view of the independence test of model, the prediction precision of general fixed effects model was the highest, its absolute mean relative error was least. The sum relative error and mean relative error decreased by introducing environment factors, and the one that stand factors introduced was the best. General regression model was bad at error and precision aspect compared with mixed effects model.
出处 《西南林业大学学报(自然科学)》 CAS 北大核心 2016年第3期121-125,共5页 Journal of Southwest Forestry University:Natural Sciences
基金 国家自然科学基金项目(31460194)资助 国家林业局林业公益性行业科研专项(201404309)资助
关键词 林分蓄积 混合效应模型 环境因子 高山松 香格里拉 stand volume, mixed effects model, environmental factors, Pinus densata, Shangri-La
  • 相关文献

参考文献8

二级参考文献102

  • 1郎奎建.森林生态效益的线性联立方程组模型的研究[J].应用生态学报,2004,15(8):1323-1328. 被引量:9
  • 2李春明,杜纪山,张会儒.间伐林分的断面积生长模型研究[J].林业资源管理,2004(3):52-55. 被引量:11
  • 3李贵祥,孟广涛,方向京,郎南军,袁春明,温绍龙.滇中高原桤木人工林群落特征及生物量分析[J].浙江林学院学报,2006,23(4):362-366. 被引量:16
  • 4李永慈.2004.基于混合模型和度量误差模型方法研究生长收获模型的参数估计问题.北京林业大学学位论文,16.
  • 5Budhathoki C B, Lynch T 4. Individual tree growth ( Pinus echinata Mill. ) Silvicultural Conference, B, Guldin J M. 2005 February 28-March models for natural even-aged Shortleaf Pine Proceedings of the 13th Biennial Southern Memphis, TN.
  • 6Calama R, Montero G. 2004.Interregional nonlinear height-diameter model with random coefficients for stone pine in spain. Canada Journal Forest Resource, 34: 150- 163.
  • 7Calegario N, Daniels R F, Maestri R, et al. 2005. Modeling dominant height growth based on nonlinear mixed-effects model: a clonal Eucalyptus plantation case study. Forest Ecology and Management,204:11 -21.
  • 8Chi E M, Reinsel G C. 1989. Models for longitudinal data with random effects and ar( 1 ) errors. Journal American Statistics Association, 84: 452.
  • 9Davidian M, Gallant A R. 1993.The nonlinear mixed effects model with a smooth random effects density. Biometric, 80: 475- 488.
  • 10Davidian M, Gihinan D M. 1995. Nonlinear models for repeated measurement data. New York: Chapman & Hall.

共引文献95

同被引文献85

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部