期刊文献+

严格α_1对角占优M矩阵A的‖A^(-1)‖_∞的估计 被引量:4

Estimates of‖A^(-1)‖_∞ of strictly α_1-diagonally dominant M-matrices
原文传递
导出
摘要 针对严格α_1-对角占优M-矩阵A的‖A^(-1)‖_∞的估计问题,利用矩阵A的元素和矩阵分裂方法,将矩阵A分裂为严格对角占优M-矩阵B和非负对角矩阵G,进而利用已有严格对角占优M-矩阵的逆矩阵的无穷大范数的上界,给出矩阵B的‖B^(-1)‖_∞的上界Γ(B),此时若Γ(B)与G的最大对角线元的乘积小于1,则可得‖A^(-1)‖_∞的上界.最后通过数值算例对所得结论进行验证,表明所给出的方法可行. For the estimates of‖A^(-1)‖_∞ of a strictlyα_1-diagonally dominant M-matrix A,the elements of Aand matrix splitting method are used,where Ais expressed as the matrix difference between a strictly diagonally dominant M-matrix Band a nonnegative diagonal matrix G.Using the existing upper bound of infinity norm of the inverse of strictly diagonally dominant M-matrices,the upper boundΓ(B)of‖B^(-1)‖_∞ is obtained.Furthermore,if the product ofΓ(B)and the largest principal diagonal elements of Gis less than 1,then the upper bound of‖A^(-1)‖_∞ is established.Finally,several numerical examples are given to validate the theoretical results,and show that the method in this paper is feasible.
出处 《扬州大学学报(自然科学版)》 CAS 北大核心 2016年第1期1-4,8,共5页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(11361074 11501141) 贵州省科学技术基金资助项目(黔科合J字[2015]2073号) 贵州民族大学引进人才科研基金资助项目(15XRY003) 贵州民族大学科研基金资助项目(15XJS009)
关键词 对角占优 M-矩阵 逆矩阵 范数 上界 diagonally dominant M-matrix inverse matrix norm upper bound
  • 相关文献

参考文献10

二级参考文献33

  • 1黄廷祝.非奇H矩阵的简捷判据[J].计算数学,1993,15(3):318-328. 被引量:198
  • 2SHIVAKUMAR P N,WILLIAMS J J,YE Q, et al. On two-sided bounds related to weakly diagonally dominant M-matrices withapplication to digital circuit dynamics[ J]. SIAM J Matrix Anal Appl, 1996,17(2) :298-312.
  • 3VARAH J M. A lower bound for the smallest singular value of a matrix[ J]. Linear Algebra Appl, 1975 ,11(1) :3-5.
  • 4CHENG G H,HUANG T Z. An upper bound for || A || w of strictly diagonally dominant M-matrices [J]. Linear Algebra Ap-pl, 2007,426(2/3) :667-673.
  • 5WANG P. An upper bound for || A _1 || w of strictly diagonally dominant M-matrices [J]. Linear Algebra Appl, 2009,431 (5/7):511-517.
  • 6HUANG T Z,ZHU Y. Estimation of || A _1 || . for weakly chained diagonally dominant M-matrices[ J]. Linear Algebra Appl,2010,43(2/3) :670-677.
  • 7VARGA R S. On diagonal dominance arguments for bounding || A _t || . [ J]. Linear Algebra Appl, 1976,17(3) :211-217.
  • 8LI W. The infinity norm bound for the inverse of nonsingular diagonal dominant matrices[ J]. Appl Math Lett, 2008 ,21 ( 3 ):258-263.
  • 9HORN R A, JOHNSON C R. Topics in matrix analysis[ M]. New York;Cambridge University Press, 1991 : 113-115.
  • 10JOHNSON C R. A Hadamard product involving M-matrices[ J], Linear Multilinear Algebra, 1977,4(4) ;261-264.

共引文献25

同被引文献20

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部