摘要
基于导电聚合物具有柔韧性好、驱动电压低、能耗小等特性,采用自制的多层弯曲型导电聚合物驱动器搭建实验系统,依据等效悬臂梁理论建立驱动器力学模型。通过测量驱动器的弯曲变形量建立偏转位移与电压、长度的函数关系式,并且计算出等效均布载荷值。实验结果表明,驱动器偏转位移与电压、长度成线性关系;当驱动电压达到1.0 V时,驱动器偏转速度趋于稳定,且偏转效果最佳。为改善普通微操作装置结构复杂、能耗大的缺点,采用导电聚合物智能材料设计并制作出微型手爪制动器,最后验证了手爪可稳定抓起0.011 1 g左右的重物。
Conducting polymers can be used to manufacture biomedical device due to their good flexibility,requiringlow actuation voltages and small energy consumption. According to the equivalent cantilever beam theory,the mechan-ical model of conducting polymer actuators are given. The experimental system has been set up for the actuators whichmade by multilayer bending conducting polymer. Through researched the substrate bending deformation,we estab-lished the function relationship between the bending displacement and the voltage and the length,calculate the numer-ical values of uniformly distributed load. The experimental results indicate that the bending displacement of the actua-tors is linear related to its length and voltage,when the voltage reaches 1.0 V,the bending speed of actuators tended tobe stable and bending effect can be considered optimal. To overcome disadvantages of high energy consumption andcomplex structures,a flexible gripper using a type of smart material called conducting polymer was designed and man-ufactured. It was verified by the fact that this gripper can grasp an object whose weight is about 0.011 1 g.
出处
《传感技术学报》
CAS
CSCD
北大核心
2016年第4期489-494,共6页
Chinese Journal of Sensors and Actuators
基金
湖南省教育厅重点项目(13A081)
湖南省研究生科研创新项目(2015SCX18)
关键词
导电聚合物
聚吡咯
柔性手爪
悬臂梁结构
等效模型
驱动器
conducting polymer
polypyrrole
flexible gripper
cantilever beam structure
equivalent model
actuator