期刊文献+

生长区域因子基于柯西列的人工根系算法

Artificial root algorithm with growth factor based on cauchy sequence
下载PDF
导出
摘要 考虑人工根系算法(AR)对目标函数过于敏感这一特性,以及由此带来的算法早熟和算法失效这两种情况,提出一种生长区域因子基于柯西列收敛的人工根系算法(CAR)。首先按照基本人工根系算法的寻优方式对各根系进行适应值评估,确定其生发新根能力;其次在一次生发新根的过程中,控制生长区域因子按柯西列收敛,使算法逐步从全局搜索收敛到局部搜索。将该算法与AR算法进行比较,数值仿真结果表明对某些函数极值问题改进算法提高了全局搜索能力和收敛精度,改善了优化性能。 The artificial root( AR) algorithm is sensitive to the objective function,and AR results in premature and failure in optimization. An artificial root algorithm whose modified growth factor is based on the convergent Cauchy-sequence( CAR) is proposed. First,this paper evaluates the fitness of the roots and calculates their abilities of root-growing according to the optimization method of the basic artificial root algorithm; then,during the process of a root-growing,the growth factor is selected as a Cauchy-sequence. Finally,the proposed algorithm is compared with AR algorithm. The experiment results show that,for some function extreme problem,CAR can effectively improve the global searching ability and enhance the accuracy of convergence.
作者 王会 孙合明
机构地区 河海大学理学院
出处 《信息技术》 2016年第5期175-178,182,共5页 Information Technology
关键词 人工根系算法 柯西列 生长区域因子 智能优化 artificial root algorithm(AR) Cauchy-sequence growth factor intelligence optimization
  • 相关文献

参考文献11

  • 1Gerwitz A,Page E.An empirical mathematic modal to describe plant root systems[J].Journal of Applied Ecology,1974(11):773-781.
  • 2Newson R.A canonical modal for production and distribution of root mass in space and time[J].J.Math.Biol.1995(33):477-488.
  • 3Cai W,Yang W,Chen X.A global optimization algorithm based on plant growth theory:Plant Growth Optimization[C]∥International conference on Intelligent Computation Technology and Automation(ICICTA),2008:1194-1199.
  • 4Qi X,Zhu Y,Chen H,et al.An idea based on plant root growth for numerical optimization[C]∥ICIC 2013,LANI 9776,2013:571-579.
  • 5华东师范大学数学系.数学分析[M].北京:高等教育出版社,2001..
  • 6Kenneth L.Optimization[M].2nd ed.Springer New York,2013.
  • 7Holland J.Adaptation in natural and artificial systems[M].University of Michigan Press,Ann Arbor,MI,1975;MIT Press,Cambridge,MA,1992.
  • 8Riccardo C,Luigi F,STEFANO F.Chaotic sequence to improve the performance of evolutionary algorithm[J].IEEE Transactions on Evolutionary Computation,Jun.2003,7(3):289-304.
  • 9邵军力,张景,魏长华.人工智能基础[M].北京:电子工业出版社,2003.
  • 10段海滨,王道波,于秀芬.几种新型仿生优化算法的比较研究[J].计算机仿真,2007,24(3):169-172. 被引量:20

二级参考文献13

  • 1段海滨,王道波.蚁群算法的全局收敛性研究及改进[J].系统工程与电子技术,2004,26(10):1506-1509. 被引量:39
  • 2段海滨,王道波,朱家强,黄向华.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1326. 被引量:211
  • 3A Colorni,et al.Distributed optimization by ant colonies[ C ].Proceedings of European Conference on Artificial Life,1991.134~142.
  • 4J Kennedy,R C Eberhart.Particle Swarm Optimization[C].Proceedings of the IEEE International Conference on Neural Networks,1995,1942-1948.
  • 5R Eberhart,J Kennedy.A new optimizer using particle swarm theory[ C].Proceedings of the 6th International Symposium on Micro -Machine and Human Science,1995.39 -43.
  • 6H Bersini,F Varela.Hints for adaptive problem solving leaned from immune network[ M ].Parallel Problem Solving from Nature.Berlin Heidelberg:Springer-Verlag,1991.343-354.
  • 7E Bonabeau,J B Yang.Inspiration for Optimization from Social insect Behaviour[J].Nature,2000,406(6):39 -42.
  • 8M Dorigo,V Maniezzo,A Colorni.Ant system:optimization by a colony of cooperating agents[ J ].IEEE Transactions on Systems,Man and Cybernetics-Part B,1996,26(1):29 -41.
  • 9D Dasgupta.Artificial neural networks and artificial immune systems:similarities and differences[ C ].Proceedings of the IEEE International Conference on Systems,Man,and Cybernetics,1997,1:873-878.
  • 10C W Reynolds.Flocks,herds,schools:a distributed behavioral model[ C ].Proceedings of SIGGRAPH87; Computer Graphics,1987,21(4):25 -34.

共引文献207

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部