期刊文献+

基于数据类型转换的点云快速有损压缩算法 被引量:9

A Fast and Lossy Compression Algorithm for Point-Cloud Models Based on Data Type Conversion
下载PDF
导出
摘要 针对海量三维点云数据为计算机存储和传输增加沉重负担的问题,提出一种基于数据类型转换的点云快速有损压缩算法。首先设计出一种数据类型转化规则-Fto I规则,根据Fto I规则将浮点数类型点云转换成整数类型点云,然后将整数类型点云切分成许多小单元面块,每一单元点云生成最小生成树,按广度优先的顺序对树形结构进行编码。同时,按照树形结构对父子节点的差值进行编码,把整型差值分成两部分编码,符号一部分,其绝对值一部分,其中绝对值部分采用算术编码进行压缩。实验表明该文算法在保证整个三维点云模型的质量情况下,具有不错的压缩速度和压缩率。 In order to solve computer storage and transmission problem due to massive 3D point cloud, a fast and lossy compression algorithm for point-cloud models based on data type conversion is proposed. Firstly, a data type conversion rule-Fto I rule is designed. According to the Fto I rule, float-point type point cloud is converted to integer type point cloud, then the integer type point-based surface is split into many sized surface patches, the points of every patches construct a minimum spanning tree, which is encoded in breadth first order. Besides we encode the difference between father node and son node according to the minimum spanning tree, the difference is split into two parts, one is sign, another is absolute value, which is encoded by arithmetic coding. Experiments show that this compression algorithm has a nice compression speed and compression ratio without losing the quality of point-cloud model.
出处 《图学学报》 CSCD 北大核心 2016年第2期199-205,共7页 Journal of Graphics
基金 国家自然科学基金项目(61405034 51175081 51475092) 教育部博士点基金项目(20130092110027)
关键词 三维点云 有损压缩 浮点数 最小生成树 算术编码 3D point cloud lossy compression float the minimum spanning tree arithmetic coding
  • 相关文献

参考文献18

  • 1Levoy M, Whitted T. The use of points as a display primitive [R]. Chapel Hill: University of North Carolina, 1985.
  • 2Kobbelt L, Botsch M. A survey of point-based techniques in computer graphics [J]. Computer & Graphics, 2004, 28(6): 801-814.
  • 3Gross M, Pfister H. Point-based graphics [M]. San Francisco: Morgan Kaufman Publisher, 2007.
  • 4王鹏杰,潘志庚,刘勇奎.基于点的三维模型压缩技术研究进展[J].计算机辅助设计与图形学学报,2009,21(10):1359-1367. 被引量:4
  • 5Zhang C, Florncio D, Loop C. Point cloud attribute compression with graph transform [C]//Image Processing (1CIP), 2014 IEEE International Conference on. New York: 1EEE Press, 2014: 2066-2070.
  • 6Gumhold S, Kami Z, Isenburg M, et al. Predictive point cloud compression [C]//Proceedings of SIGGRAPH Sketches. New York: ACM Press, 2005: 137.
  • 7王鹏杰,潘志庚,徐明亮,刘勇奎.基于局部最小生成树的点模型快速无损压缩算法[J].计算机研究与发展,2011,48(7):1263-1268. 被引量:5
  • 8Morell V, Orts S, Cazorla M, et al. Geometric 3D point cloud compression [J]. Pattern Recognition Letters, 2014, 50: 55-62.
  • 9范然,金小刚.大规模点云选择及精简[J].图学学报,2013,34(3):12-19. 被引量:6
  • 10Chen D, Chiang Y J, Memon N. Lossless compression of point-based 3D models [J]. Proceedings of Pacific Graphics, 2005: 124-126.

二级参考文献102

共引文献12

同被引文献63

引证文献9

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部