期刊文献+

基于最优子段的矩形优化排样 被引量:1

Rectangular Optimal Layout Based on Best Sub Segments
下载PDF
导出
摘要 为有效解决企业实际生产中的矩形优化排样问题,对矩形优化排样算法进行研究,给出基于最优子段的矩形优化排样算法,有效解决了企业实际生产中的长板矩形优化排样问题。首先基于动态规划算法求出所有小于剪床刀刃长度的最优子段的最佳排样方式,然后以所求的最优子段作为可用子段在长板上进行优化排样,并将矩形优化排样问题转化为完全背包问题。最后基于分支定界技术的整数规划算法对其进行求解。企业应用实例表明该算法在解决长板矩形优化问题方面优于其他算法。 To effectively solve the long board rectangular optimal layout problems which is often encountered in the actual production of enterprises, rectangular optimal layout algorithms were studied and a rectangular optimal layout algorithm based on the best sub segments was proposed, which effectively solve long board rectangular optimal layout problems in actual production. Firstly based on dynamic programming algorithm all sub optimal layout modes were solved which is less than the shear blade length. Secondly with the best sub segments as layout parts, these segments were optimized on the long board and the rectangular optimal layout problems were converted to knapsack problems completely. Finally the integer programming algorithm based on branch and bound technique was used to solve the long board rectangular optimal layout problems. Enterprise's practical application showed that the algorithm in solving the long board rectangular optimization problems is better than other algorithms.
作者 姜永亮 周俊
出处 《图学学报》 CSCD 北大核心 2016年第2期280-284,共5页 Journal of Graphics
基金 国家自然科学基金项目(71361008) 海南省重点科技基金项目(ZDXM20130080) 海南省自然科学基金项目(612136)
关键词 矩形优化排样 最优子段 动态规划算法 分支定界技术 rectangular optimal layout best sub segment dynamic programming algorithm branch and bound technique
  • 相关文献

参考文献10

二级参考文献53

  • 1黄文奇,朱虹,许向阳,宋益民.求解方格packing问题的启发式算法[J].计算机学报,1993,16(11):829-836. 被引量:14
  • 2崔耀东.生成矩形毛坯最优T形排样方式的递归算法[J].计算机辅助设计与图形学学报,2006,18(1):125-127. 被引量:22
  • 3陶永根.改进开料工艺 提高钢材利用率[J].电机技术,1990(2):47-47. 被引量:1
  • 4Young G G,Seong Y J,Kang M K.A best-firstbranch and bound algorithm for unconstrained two-dimensional cutting problems[J].Operations Research Letters,2003,31(4):301-307.
  • 5Valerio C J M.LP models for bin packing and cu-tting stock problems[J].European Journal of Operational Research,2002,141(2):253-273.
  • 6Fayard D,Zissimopoulos V.An approximation algorithm for solving unconstrained two-dimensional knapsack problems[J].European Journal of Operational Research,1995,84(3):618-632.
  • 7Cui Y.Generating optimal T-shape cutting patterns for rectangular blanks[J].Journal of Engineering Manufacture,2004,218(8):857-866.
  • 8Andonov R,Poirrez V,Rajopadhye S.Unbounded knapsack problem:dynamic programming revisited[J].European Journal of Operational Research,2000,123(2):394-407.
  • 9Cui Y,Wang Z,Li J.Exact and heuristic algorithms for staged cutting problems[J].Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2005,219(B2):201-208.
  • 10Cui Y.Generating optimal T-shape cutting patterns for rectangular blanks[J].Journal of Engineering Manufacture,2004,218(B8):857-866.

共引文献81

同被引文献3

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部