期刊文献+

基于数据挖掘的多轨迹特征检测技术 被引量:2

Multiple Trajectories Feature Detection Technology Based on Data Mining
下载PDF
导出
摘要 针对现有恶意程序行为特征检测存在的不足,采用多轨迹检测方法,用文件操作、网络访问、内存资源访问的行为特征构建出三维恶意行为特征库。在构造投影数据库的过程中,结合AC自动机优化频繁序列查询,舍去不满足最小长度的频繁序列,得到改进的数据挖掘算法——Prefixspan-x,并将其应用于动态提取恶意软件行为特征库和阈值匹配,以克服静态反汇编方式获取软件行为轨迹时软件加壳、混淆带来的检测困难。实验结果表明,基于数据挖掘的多轨迹特征检测技术具有较高的准确率和较低的漏报率。 In order to solve the shortcomings of the malware behavior characteristic detection,we proposed a multiple tracks detection method which uses the behavior characteristics of file operation,network access and memory resources to construct a three-dimensional signatures of malicious behavior database.In the course of constructing projection database,we combined AC automation which can optimize frequent sequence query,deleted these frequent sequences which are shorter than the minimum length,and then got the improved data mining algorithm,called Prefixspan-x.We used the algorithm to dynamicly extract malicious behavior characteristic database and threshold match,in order to overcome the detection difficulties caused by software packers and confusion during static disassembly way to get the software behavior trajectories.Experimental results show that the proposed feature detection technology has high accuracy and low false negative rate.
出处 《计算机科学》 CSCD 北大核心 2016年第5期91-95,共5页 Computer Science
基金 国家自然科学基金(61472447)资助
关键词 行为轨迹 数据挖掘 Prefixspan-x 特征库 阈值匹配 Behavioral trajectories Data mining Prefixspan-x Characteristic database Threshold matching
  • 相关文献

参考文献16

二级参考文献67

  • 1李勇,左志宏.目标代码混淆技术综述[J].计算机技术与发展,2007,17(4):125-127. 被引量:10
  • 2张坤,朱扬勇.无重复投影数据库扫描的序列模式挖掘算法[J].计算机研究与发展,2007,44(1):126-132. 被引量:17
  • 3Yu Zhen-wei,Tsai J J P,Weigert T.An automatically tuning intrusion detection.system[J].IEEE Transactions on Systems,Man,and Cybernetics-Part B : Cybernetics, 2007,37 ( 2 ) : 373-384.
  • 4Lee W,Stolfo S J.Data mining approaches for intrusion detection[C]// Proc of the 7th USENIX Security Symp.Sam Antonio:USENIX, 1998:6-9.
  • 5Ye N.A Markov chains model of temporal behavior for anomaly detection[C]//Proc of the 2000 IEEE Workshop on Information Assurance and Security .United States Military Academy ,West Point: IEEE Press,2000: 171-174.
  • 6Battistoni R,Cabrielli E,Mancini L V.A host intrusion prevention system for Windows operating systems[C]//9th European Symposium Research in Computer Security,Sophia Antipolice France, 2004: 134-142.
  • 7Forrest S,Hofmeyr S A,Somayaji A,et al.A sense of self for UNIX processes[C]//Proceedings of the 1996 IEEE Symposium on Security and Privacy,6-8 May 1996: 120-128.
  • 8Lane T.Hidden Markov models for human/computer interface modeling[C]//Proc of the International AI Society.Proc of the 1JCAI-99 Workshop on Learning about Users.Stockholm:International AI Society, 1999: 35-44.
  • 9Han S J,Cho S B..Evolutionary neural networks for anomaly detection based on the behavior of a program[J].IEEE Transactions on Systems, Man., and Cybernetics-Part B : Cybernetics,2006,36 ( 3 ) : 559-570.
  • 10Michael C,Ghosh A.Simple,state-based approaches to program- based anomaly detection[J].ACM Transactions on Information and System Security, 2002,5(3 ) : 203-237.

共引文献181

同被引文献19

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部