期刊文献+

复杂曲面研抛加工材料去除廓形建模研究

Research on the Modeling of the Material Removal Profile of Complex Curved Surface Polishing
下载PDF
导出
摘要 为了研究复杂曲面工件研抛加工时的去除量,建立了复杂曲面工件移动研抛表面材料去除廓形的预测模型。利用圆形赫兹接触理论对球形磨头和复杂曲面工件的接触压强分布进行分析建模,同时对球形磨头研抛区域的相对线速度分布进行理论推导,利用微元积分原理和移动材料去除指数建立了移动研抛表面材料去除廓形的理论方程并用MATLAB软件对材料去除廓形的理论方程进行了仿真。结果表明材料去除深度与法向正压力、磨头转速、研抛倾角成正比,与进给速度成反比;廓形宽度与法向正压力成正比,磨头转速、研抛倾角、进给速度不影响廓形宽度;研抛偏角对去除深度和廓形宽度的影响可以忽略不计。 The velocity-dwell-mode polishing surface of the material removal profile prediction model is estanlished to research the removal of the complex curved surface in the polishing process. Assuming that the contact between the spherical polishing head and complex curved surface parts is the circular Hertzian contact,the distribution of contact pressure is analyzed,and the relative linear velocity distribution of the spherical polishing head region is theoretically deduced and the theoretical equation of the velocity-dwell-mode polishing material removal profile is derived based on the velocity-dwell-mode polishing material removal index and the micro integral principle. The theoretical equation of the material removal profile is simulated by MATLAB software. The results show that the material removal depth is positive proportion to the normal pressure, the rotating speed of the polishing head,polishing obliquity angle and is inverse proportion to feed rate; profile width is positive proportion to the normal pressure, rotating speed of the polishing head,polishing obliquity angle,feed rate does not affect the profile width; Effect of polishing deflection angle on the removal depth and profile width of the removal profile is negligible.
出处 《组合机床与自动化加工技术》 北大核心 2016年第6期26-29,共4页 Modular Machine Tool & Automatic Manufacturing Technique
基金 沈阳市科技创新专项资金资助项目(F13-020-2-00)
关键词 超精密加工 复杂曲面 移动研抛 材料去除廓形 ultra precision machining complex curved surface velocity-dwell-mode polishing material removal profile
  • 相关文献

参考文献3

二级参考文献30

  • 1张海鸥,崔同魁,韩光超,王桂兰.面向快速制造车身模具的机器人软质工具研磨工艺研究[J].电加工与模具,2006(6):37-41. 被引量:2
  • 2MASON M T.Compliance and force control for computer controllered manipulators[J].IEEE Transactions on Systems, Man and Cybernetics, 1981,11(6):418-432.
  • 3ROBERTSSON A, OLSSON T, JOHANSSON R, et al..Implementation of industrial robot force control case study: high power stub grinding and deburring[J].Intelligent Robots and Systems, Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, 2006, 2743-2748.
  • 4MINAMI M, XU W W.Shape-grinding by direct position / force control with on-line constraint estimation [J].International Conference on Intelligent Robots and Systems, 2008:943-948.
  • 5HAMELIN P, BIGRAS P, BEAUDRY J, et al..Discrete-time state feedback with velocity estimation using a dual observer: application to an underwater direct-drive grinding robot[J].IEEE/ASME Transactions on Mechatronics, 2012, 17(1):187-191.
  • 6LI ZH J, YANG Y P, LI J X.Adaptive motion/force control of mobile under-actuated manipulators with dynamics uncertainties by dynamic coupling and output feedback[J].IEEE Transactions on Control Systems Technology, 2010, 18(5):1068-1079.
  • 7SONG Y X, LV H B, YANG Z H.An adaptive modeling method for a robot belt grinding process[J].IEEE/ASME Transactions on Mechatronics, 2012, 17(2):309-317.
  • 8KLINE W A, DEVOR R E, LINDBERG J R.The prediction of cutting forces in end milling with application to cornering cuts [J].International Journal of Machine Tool Design and Research, 1982, 22(1):7-22.
  • 9DOULGERI Z, KARAYIANNIDIS Y.Force/position regulation for a robot in compliant contact using adaptive surface slope identification [J].IEEE Transactions on Automatic Control, 2008, 53(9):2116-2122.
  • 10VANDERBORGHT B, SUGER T, LEFBER D.Adaptable compliance or variable stiffness for robotic applications [J].IEEE Robotics & Automation Magazine, 2008: 8-9.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部