期刊文献+

基于稀疏表示的分块人脸识别算法 被引量:1

Sub-modular sparse representation algorithm for face recognition
下载PDF
导出
摘要 最近基于原型(Prototype)加变差(Variation)表示模型的稀疏表示方法被有效用于人脸识别。由于该算法是基于整个人脸来考虑的,忽略了人脸局部特征对整个识别过程的影响。为了解决这个问题,引入了分块处理的思想,运用Borda计数的方法对每个子模块按照残差大小进行投票,根据最终的投票结果对人脸进行分类判别。在AR人脸库上的实验结果表明该方法与其他方法相比,在对具有部分遮挡和光照变化人脸的识别上具有更好的效果。 Recently the method of sparse representation based on prototype plus variation model is applied in face recognition effectively. This algorithm only considers about the holistic face, but ignores the effect of local feature in the entire process. To solve this problem, this paper adds the idea of block processing. The Borda count method is used to assign different votes to various classes of the sub-modular. Then it classifies the faces according to the final votes. The experimental results on AR datasets validate that this method performs better than other methods when the faces are partially obscured or under different light conditions.
作者 盛博文 喻莹
出处 《计算机工程与应用》 CSCD 北大核心 2016年第11期196-199,共4页 Computer Engineering and Applications
关键词 人脸识别 稀疏表示 Borda投票 子模块 face recognition sparse representation Borda count sub-modular
  • 相关文献

参考文献15

  • 1Turk M,Pentland A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience,1991,3(1):71-86.
  • 2陈伏兵,陈秀宏,张生亮,杨静宇.基于模块2DPCA的人脸识别方法[J].中国图象图形学报,2006,11(4):580-585. 被引量:61
  • 3刘青山,卢汉清,马颂德.综述人脸识别中的子空间方法[J].自动化学报,2003,29(6):900-911. 被引量:117
  • 4Belhumeur P N,Hespanha J P,Kriegman D.Eigenfaces vs.fisherfaces:recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 5Wright J,Yang A Y,Ganesh A,et al.Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227.
  • 6Zhou Z,Wagner A,Mobahi H,et al.Face recognition with contiguous occlusion using Markov random fields[C]//2009 IEEE 12th International Conference on Computer Vision,2009:1050-1057.
  • 7Yang M,Zhang L,Shiu S C K,et al.Gabor feature based robust representation and classification for face recognition with Gabor occlusion dictionary[J].Pattern Recognition,2013,46(7):1865-1878.
  • 8张娟,詹永照,毛启容,邹翔.基于Gabor小波和稀疏表示的人脸表情识别[J].计算机工程,2012,38(6):207-209. 被引量:17
  • 9Deng W,Hu J,Guo J.In defense of sparsity based face recognition[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2013:399-406.
  • 10聂祥飞,郭军.利用Gabor小波变换解决人脸识别中的小样本问题[J].光学精密工程,2007,15(6):973-977. 被引量:20

二级参考文献106

  • 1杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 2乌旭,胡家升,梁殿亮.基于区域分割的指纹奇异性检测及中心点计算[J].光学精密工程,2006,14(2):229-235. 被引量:12
  • 3许廷发,韦岗,倪国强.基于并行结构的Gabor小波神经网络算法及应用[J].光学精密工程,2006,14(2):247-250. 被引量:8
  • 4李粉兰,徐可欣.一种应用于人脸正面图像的眼睛自动定位算法[J].光学精密工程,2006,14(2):320-326. 被引量:20
  • 5Zhan Yongzhao, Ye Jingfu, Niu Dejiao. Facial Expression Recog- nition Based on Gabor Wavelet Transformation and Elastic Templates Matching[J]. International Journal of Image and Graphics, 2006, 6(1): 125-138.
  • 6Wright J, Ma Yi, Mairal J, et al. Sparse Representation for Computer Vision and Pattern Recognition[J]. Proceedings of the IEEE, 2010, 98(6): 1031-1044.
  • 7Baraniuk R, Candes E, Elad M. Applications of Sparse Representation and Compressive Sensing[J]. Proceedings of the IEEE, 2010, 98(6): 906-909.
  • 8Wright J, Yang A Y, Ganesh A, et al. Robust Face Recognition via Sparse Representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 9Wagner A, Wright J, Ganesh A, et al. Towards a Practical Face Recognition System: Robust Registration and Illumination by Sparse Representation[C]//Proc. of IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE Press, 2009: 597-604.
  • 10Donoho D L, Elad M, Temlyakov V N. Stable Recovery of Sparse Overcomplete Representations in the Presence of Noise[J]. IEEE Transactions on Information Theory, 2006, 52(1): 6-18.

共引文献214

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部