期刊文献+

面向大规模类不平衡数据的变分高斯过程分类算法 被引量:5

Variational Gaussian process classification algorithm for large-scale class-imbalanced data
下载PDF
导出
摘要 变分高斯过程分类器是最近提出的一种较有效的面向大规模数据的快速核分类算法,其在处理类不平衡问题时,对少数类样本的预测精度通常会较低.针对此问题,通过在似然函数中引入指数权重系数和构造包含相同数目正负类样本的诱导子集解决原始算法的分类面向少数类偏移的问题,建立了一种可以有效处理大规模类不平衡问题的改进变分高斯过程分类算法.在10个大规模UCI数据集上的实验结果表明,改进算法在类不平衡问题上的精度较原始算法得到大幅提高. Variational Gaussian process classifier is an effective fast kernel algorithm proposed recently for large-scale data classification. However, for the class-imbalanced problem, it usually achieves lower accuracy on the samples of minority class. By assigning different index weight coefficients to the likelihood functions and constructing an inducing set containing equal numbers of positive and negative samples to avoid hyperplane biased toward the side of minority class, an improved variational Gaussian process classification algorithm is proposed, which can deal with the large-scale class-imbalanced problem effectively. The experimental results of ten large-scale UCI datasets show that the proposed algorithm can achieve much higher accuracy than the original one for class-imbalanced problem.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2016年第3期279-284,共6页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(61503058 61374170) 辽宁省自然科学基金资助项目(2015020084 2015020099) 辽宁省教育厅科学技术研究项目(L2014540 L2015127) 中央高校基本科研业务费专项资金资助项目(DC201501055 DC201501060201)
关键词 类不平衡问题 高斯过程 变分推理 大规模数据分类 class-imbalanced problem Gaussian process variational inference large-scale dataclassification
  • 相关文献

参考文献18

  • 1Ranganathan A, Yang Ming-hsuan, Ho J. Onlinesparse Gaussian process regression and itsapplications [ J ]. IEEE Transactions on ImageProcessing* 2011,20(2):391-404.
  • 2Williams C,Barber D. Bayesian classification withGaussian processes [J]. IEEE Transactions onPattern Analysis and Machine Intelligence, 1998,20(12):1342-1351.
  • 3Kim Hyun-chul, Lee Jaewook. Clustering based onGaussian processes [J]. Neural Computation, 2007,19(11):3088-3107.
  • 4Chu W, Sindhwani V,Ghahramani Z,et al.Relational learning with Gaussian processes [J].Advances in Neural Information Processing Systems >2007:289-296.
  • 5Engel Y,Mannor S,Meir R. Reinforcementlearning with Gaussian processes [C] / / Proceedingsof the 22nd International Conference on MachineLearning. New York:ACM Press, 2005:201-208.
  • 6HE Jian-jun, GU AHong, WANG Zh^long.Bayesian multi-instance multi-label learning usingGaussian process prior [ J ]. Machine Learning,2012,88(1-2);273-295.
  • 7Kim Hyun-chul,Ghahramani Z. Bayesian Gaussianprocess classification with the EM-EPalgorithm [J]. IEEE Transactions on PatternAnalysis and Machine Intelligence* 2006,28 (12):1948-1959.
  • 8Opper M, Archambeau C. The variational Gaussianapproximation revisited [J ]. Neural Computation,2008, 21(3):786~792.
  • 9Gibbs M N,MacKay D J C. Variational Gaussianprocess classifiers [J], IEEE Transactions on NeuralNetworks, 2000,11(6) : 1458-1464.
  • 10Opper M,Winther O. Mean field methods forclassification with Gaussian processes [J]. Advancesin Neural Information Processing Systems, 1999:309-315.

同被引文献38

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部