期刊文献+

物理受限冗余机械臂逆运动学凸优化求解 被引量:7

Convex Optimization Solution for Inverse Kinematics of a Physically Constrained Redundant Manipulator
原文传递
导出
摘要 针对冗余机械臂逆运动学求解结果极有可能超过机械臂物理限制的问题,提出一种基于凸优化的逆运动学求解方法使得逆解结果满足物理约束.首先分析了关节速度与力矩关系,采用机械臂动能及重复运动为优化指标,以关节速度、关节力矩为优化变量.然后将逆运动学求解问题转化为凸优化问题,进一步转化为二次规划问题,充分利用冗余特性,实现逆运动学求解时避免关节位置、关节速度、关节力矩极限.最后利用7自由度冗余机械臂KUKA LBR iiwa进行仿真,求解关节量结果符合物理极限及优化准则.结果表明本文提出的方法适用于物理受限冗余机械臂的逆运动学求解. Results of redundant manipulator inverse kinematics are likely to exceed the manipulator's physical constraints.To acquire inverse kinematics solution subject to physical bounds, a method using convex optimization is adopted. Firstly,the relation between joint velocity and torque is analyzed, and the manipulator kinetic energy and the repetitive motion are adopted as the optimization criteria, with joint velocity and joint torque as the optimization variables. Then the inverse kinematics problem is transformed into a convex optimization problem and further transformed into a quadratic programming problem. Taking full advantage of the redundancy of the manipulator, physical constraints including the joint position, joint velocity and joint torque are avoided in solving the inverse kinematics. Finally, simulation experiment is carried out on a7-DOF redundant manipulator KUKA LBR iiwa. Results of the obtained joint variables satisfy the physical constraints and the optimization criteria. The result shows that the proposed method is suitable for solving inverse kinematics of physically constrained redundant manipulator.
出处 《机器人》 EI CSCD 北大核心 2016年第3期257-264,共8页 Robot
基金 国家自然科学基金(61503076 61175113) 江苏省自然科学基金(BK20150624) 复杂工程系统测量与控制教育部重点实验室开放课题(MCCSE2014B02)
关键词 冗余机械臂 逆运动学 凸优化 关节极限 redundant manipulator inverse kinematics convex optimization joint limits
  • 相关文献

参考文献7

二级参考文献52

  • 1夏又生,吴新余.二次型规划问题的进一步研究[J].南京邮电学院学报,1994,14(1):89-93. 被引量:1
  • 2祖迪,吴镇炜,谈大龙.一种冗余机器人逆运动学求解的有效方法[J].机械工程学报,2005,41(6):71-75. 被引量:50
  • 3赵占芳,张启先.冗余自由度机器人的运动学优化研究[J].北京理工大学学报,1995,15(4):409-414. 被引量:13
  • 4Zhao J W, Sun L N, Du Z J. Self-motion analysis on a redundant robot with a parallel/series hybrid configuration [C]. IEEE Int Conf on Control, Automation, Robotics and Vision. Singapore, 2006: 2239-2244.
  • 5Fu Y L, Pan B, I.i K, et al. Laparoscopic robot design and kinematic validation [C]. IEEE Int Conf on Robotics and Biomimetics. Kunming, 2006: 1426-1431.
  • 6Marnni G, Kim J. Yuh J, et al. Algorithmic singularities avoidance in task-priority based controller for redundant manipulators [C]. IEEE Int Conf on Intelligent Robots and Systems. Las Vegas, 2003: 3570-3574.
  • 7Zhang Y N, Wang J. Obstacle avoidance of redundant manipulators using a dual neural network[C]. IEEE Int Conf on Robotics and Automation. Taipei, 2003: 2747- 2752.
  • 8Dubey R V, Euler J A, Babcock S M. An efficient gradient optimization scheme for a seven-degree-of- freedom redundant robot with spherical wrist[C]. IEEE Int Conf on Robotics and Automation. Philadelphia, 1988, 1: 28-36.
  • 9Chen W H, Yang M M, Yu S Q. A hybrid algorithm for the kinematic control of redundant manipulators[C]. IEEE Int Conf on Systems, Man and Cybernetics.2004~ 4438-4443.
  • 10Lee K K, Buss M. Redundancy resolution with multiple criteria[C]. IEEE Int Conf on Intelligent Robots and Systems. Beijing, 2006: 598-603.

共引文献134

同被引文献65

引证文献7

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部