期刊文献+

水平轴风力机多机组阵列的数值模拟 被引量:4

NUMERICAL SIMULATION OF WIND TURBINE WITH HORIZONTAL AXIS IN MULTIPLE UNIT ARRAY
原文传递
导出
摘要 利用FLUENT软件对4台额定功率为1.2 MW的水平轴风力机分别在顺列和错列布置方式下及不同入流角情况下进行数值模拟,结合叶轮尾流理论分析转动叶片与塔架之间以及上游两机组间的尾流相互干扰对下游风力机输出功率的影响。结果表明:多机组风力机错列布置时上游风力机尾流对下游风力机功率的输出影响更小。在错列布置中,入流角为15°时上游风力机尾流对下游风力机的影响最小,同时下游风力机的输出功率较大,与其额定功率相比相对误差较小。合理的偏航角有利于下游风力机输出功率的提高,即提高整个风场效率。 The paper performs numerical simulation in the output power of the 1.2 MW of four horizontal-axis wind turbines, comparing the flow distribution difference between In-line arrangement and Staggered arrangement condition. Besides, it also contrasts the output power of the downstream wind turbine condition of the different inflow angle. By combining impeller wake theory analysis the effects of power output for downstream wind turbines between the upstream blade rotation and the tower and the interference between the two upstream units wake. The results showed that multi-unit wind turbine during operation under different layout and yawing angle conditions, upstream turbine wakes impact on different effects for downstream wind turbine of operating conditions and power, on the same operation conditions, On the same operation conditions, when inflow angle of the staggered arrangement is 15°, the upstream wind turbine wake effects on downstream of wind turbine little, so the downstream wind turbine output power is larger, compared to its rated power, the relative error is small. Therefore, in multi-unit arrangement of the entire wind farm , it is best to avoid to inline arrangement of multi-unit and adopt staggered arrangement of multi-unit rational yaw angle can increase output power of downstream wind turbine, and can increase the efficiency of overall wind farm.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2016年第5期1133-1138,共6页 Acta Energiae Solaris Sinica
关键词 水平轴风力机 数值模拟 多机组阵列 输出功率 horizontal wind turbine numerical simulation multiple unit array output power
  • 相关文献

参考文献7

  • 1祝贺,徐建源,滕云,齐宏伟.风力机风轮气动性能三维流场数值模拟[J].中国电机工程学报,2010,30(17):85-90. 被引量:35
  • 2Frandsen S, Barthelmie R J, Pryor S C, et al. The necessary distance between large wind farms offshore-- study [ R ]. Roskilde Denmark : Ris National Laboratory, 2004.
  • 3Barthelemie R J, Rathmann O, Frandsen S T, et al. Modelling and measurements of wakes in large wind farms [J]. Journal of Physics: Conference Series, 2007, 37 : 12--49.
  • 4Careangiu C E. CFD-RANS study of horizontal axis wind turbines [M]. Cagliari: DIMeCa Universita degli Studi di Cagliari, 2008.
  • 5王承胞,张源.风力发电[M].北京:中国电力出版社,2002.
  • 6Hahm T, Krtining J. In the wake of a wind turbine[J]. Fluent News, 2002, 11 ( 1 ) : 5--7.
  • 7李少华,岳巍澎,王东华,岳征.基于CFD的旋转风轮气动性能分析[J].动力工程学报,2011,31(9):705-708. 被引量:9

二级参考文献25

  • 1毛军,杨立国,郗艳红.大型轴流风机叶片的气动弹性数值分析研究[J].机械工程学报,2009,45(11):133-139. 被引量:34
  • 2胡丹梅,田杰,杜朝辉.水平轴风力机尾迹的测量与分析[J].动力工程,2006,26(5):751-755. 被引量:18
  • 3Veers P S, Ashwill T D, Sutherland H J, et al. Trends in the design, manufacture and evaluation of wind turbine rotor[J]. Wind Energy, 2003, 6(3): 245-259.
  • 4Hsu M H. Dynamic behaviour of wind turbine blades[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical EngineeringScience, 2008, 222(8): 1453-1464.
  • 5Liu Tingrui, Ren Yongsheng. Aeroelastic stability of wind turbine rotor based on Beddoes-Leishman model[C]. 2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop Proceedings,Wuhan,2008: 605-608.
  • 6Duquette M M, Visser K D. Numerical implications of solidity and blade number on rotor performance of horizontal-axis wind turbines [J]. Journal of Solar Energy Engineering, 2003, 125(4): 425-432.
  • 7Chanin Tongchitpakdee, Sarun Benjanirat, Sankar L N. Numerical simulation of the aerodynamics of horizontal axis wind turbines under yawed flow conditions[J]. Journal of Solar Energy Engineering, 2005, 127(4): 464-474.
  • 8Abba A, Cercignani C, Valdettaro L. Analysis of subgrid scale models[J]. Computers and Mathematics With Applications, 2003, 46(4): 521-535.
  • 9Kosovic Branko, Pullin D I, Samtaney Ravi, Subgrid-scale modeling for large-eddy simulation of compressible turbulence[J]. Physics of Fluid, 2002, 14(4): 1511-1522.
  • 10Wissink J G. DNS of separating low Reynolds number flow in a turbine cascade with incoming wakes[J]. International Journal of Heat and Fluid Flow, 2003, 24(4): 626-635.

共引文献42

同被引文献25

引证文献4

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部