期刊文献+

一种新型GNSS/IMU方式在无人机导航中的应用 被引量:7

Study on the GNSS / IMU Integrated Navigation Algorithm Based on DCM
下载PDF
导出
摘要 GNSS/IMU组合导航一般采取基于欧拉角的组合方式。为了加快收敛速度,通常采用非线性滤波。但非线性滤波如EKF等仍然有一定的截断误差且计算量较大。采取基于DCM的组合导航方式,建立了基于DCM的GNSS/IMU的组合导航模型,并以基于DCM的卡尔曼滤波方式进行滤波解算。组合导航姿态收敛快,且计算量小。通过采用无人机实测数据进行分析,并与基于欧拉角的Kalman滤波组合导航算法进行比较,该方法有效缩短了计算时间,且精度较高。更适合无人机等高动态载体的实时导航需求。 GNSS / IMU integrated navigation is generally based on Euler angles. And non-linear filtering is usually used to speed up the convergence rate. However, the non-linear filtering such as EKF still has a certain truncation error and the calculation amount is large. A new kind of integrated navigation based on DCM was adopted here to build GNSS / IMU integrated navigation, and Kalman filtering based on DCM was used to filter and calculate data.The convergence rate of attitude of this integrated navigation is fast and the computation is small. The algorithm was analyzed by using the real data of UAV during the experiment. And compared with the Kalman filtering algorithm based on Euler angles, this method is more accurate and less computational. It is more suitable for real-time navigation needs of high dynamic carrier such as UAV.
机构地区 信息工程大学
出处 《测绘科学技术学报》 CSCD 北大核心 2016年第1期16-20,共5页 Journal of Geomatics Science and Technology
基金 地理信息工程国家重点实验室重点基金课题(SKLGIE2014-Z-2-1)
关键词 方向余弦矩阵 欧拉角 卡尔曼滤波 无人机 组合导航 DCM Euler angles Kalman filtering UAV integrated navigation
  • 相关文献

参考文献8

  • 1秦永元.惯性导航[M].第二版.北京:科学出版社,2014.
  • 2毛克诚,孙付平,李海丰.UKF在GPS/INS组合导航系统中的应用[J].测绘科学技术学报,2007,24(3):200-202. 被引量:6
  • 3ZHOU J,KNEDLIK S,EDWAN E,et al.Low-cost INS/GPS with nonlinear filtering methods[C]∥Proceedings of the13th International Conference on Information Fusion.Edinburgh,UK,2010:1-8.
  • 4SUH J S,PARK S Y,KANG H J,et al.Attitude estimation adaptively compensating external acceleration[J].JSME International Journal:C,2006,49:172-179.
  • 5REHBINDER H,XIAO MENG H.Drift-free attitude estimation for accelerated rigid bodies[C]∥Proceedings of 2001IEEE International Conference on Roboticsand Automation(ICRA2001),2001:4244-4249.
  • 6FOXLIN E.Inertial head-tracker sensor fusionby a complementary separate-bias Kalman filter[C]∥Proceedings of the IEEE Virtual Reality Annual International Symposium,1996:185-194;267.
  • 7SAVAGE P G.Strapdown system computational elements[C]∥NATO RTO Educational Notes.SET-064,Neuilly-sur-Seine Cedex,France,2004:1-28.
  • 8CHOUKROUN D.Novel methods for attitude determination using vector observations[D].The Technion,Ph D Dissertation,2003:81-96.

二级参考文献6

  • 1毛克彪,覃志豪,徐斌.针对ASTER数据的单窗算法[J].测绘学院学报,2005,22(1):40-42. 被引量:11
  • 2[1]Xiaoying Kong.INS algorithm using quaternion model for low cost IMU[J].Robotics and Autonomous Systems,2004,46:221-246.
  • 3[2]Julier S J,Uhlmann J K.A new extension of Kalman Filter to nonlinear systems[A].The proceedings of the American control conference[C].Seattle Washington,1995:1628-1632.
  • 4[3]Wan E A,Rudolph der Merwe.The Unscented Kalman filter for nonlinear estimation[A].The Proceedings of IEEE symposium on adaptive systems for signal processing communications and control[C].Lake Louise,Alberta Canada,2000:153-158.
  • 5[4]Pande Hartana.Comparison of linearized and extended Kalman filter in GPS-aided inertial navigation system[D].Ottawa:Carleton University.2000.
  • 6蔡洪.Unscented Kalman滤波用于再入飞行器跟踪[J].飞行器测控学报,2003,22(3):12-16. 被引量:25

共引文献11

同被引文献56

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部