期刊文献+

布朗斯特酸催化下邻羟基苯乙烯与吲哚的反应——1,1-二芳基乙烷类化合物的合成 被引量:1

Bronsted Acid Catalyzed Reaction of ortho-Hydroxylstyrenes with Indoles:Synthesis of 1,1-Diarylethanes
原文传递
导出
摘要 1,1-二芳基乙烷骨架存在于许多具有生物活性的分子中,该类化合物的合成受到了化学工作者的广泛关注.实现了在消旋磷酸催化下结构普通的邻羟基苯乙烯与吲哚的反应,高效高产率地合成了一系列具有结构多样性的1,1-二芳基乙烷类化合物(产率高达99%).该反应是基于邻羟基苯乙烯在消旋磷酸催化下异构化成邻亚甲基苯醌中间体,通过消旋磷酸对该中间体和吲哚的双氢键活化模式,实现该反应的高效性.该反应条件温和,底物适用性广,不仅为解决金属催化带来的金属残留、反应条件苛刻等问题提供了有效的策略,同时也拓展了利用有机小分子催化来合成1,1-二芳基乙烷类化合物的反应适用范围. The skeleton of 1,1-diarylethane exists in many biologically important molecules. So, the synthesis of 1,1-diarylethanes has absorbed great attention from the chemists. This work has established a reaction of ortho-hydroxylstyrenes with indoles in the presence of racemic phosphoric acid, leading to the efficient synthesis of a series of 1,1-diarylethanes with structural diversity in high yields(up to 99%). This reaction is based on the fact that ortho-hydroxylstyrenes could transform into ortho-quinone methide under the catalysis of racemic phosphoric acid. The dual activation mode of racemic phosphoric acid to ortho-quinone methide and indole via forming two hydrogen bonds contributed greatly to the efficiency of the reaction. The mild reaction condition and wide substrate scope of the reaction will not only provide a useful strategy for solving the problems of residual metal and harsh reaction condition associated with metal catalysis, but also expand the applicability of organocatalytic reactions for the synthesis of 1,1-diarylethanes.
出处 《有机化学》 SCIE CAS CSCD 北大核心 2016年第5期1014-1020,共7页 Chinese Journal of Organic Chemistry
基金 国家自然科学基金(No.21372002) 江苏高校品牌专业建设工程资助项目
关键词 布朗斯特酸催化 有机小分子催化 1 1-二芳基乙烷 邻羟基苯乙烯 吲哚 邻亚甲基苯醌 Bronsted acid catalysis organocatalysis 1,1-diarylethane ortho-hydroxylstyrene indole ortho-quinone methide
  • 相关文献

参考文献25

  • 1Cheltsov, A. V.; Aoyagi, M.; Aleshin, A.; Yu, E. C.-W.; Gilliland, T.; Zhai, D.; Bobkov, A. A.; Reed, J. C.; Liddington, R. C.; Abagyan, R. J. Med. Chem.2010, 53, 3899.
  • 2Pathak, T. P.; Osiak, J. G.; Vaden, R. M.; Welm, B. E.; Sigman, M. S. Tetrahedron 2012, 68, 5203.
  • 3Messaoudi, S.; Hamze, A.; Provot, O.; Tréguier, B.; Rodrigo De Losada, J.; Bignon, J.; Liu, J.-M.; Wdzieczak-Bakala, J.; Thoret, S.; Dubois, J.; Brion, J.-D.; Alami, M. ChemMedChem 2011, 6, 488.
  • 4Nakao, Y.; Kanyiva, K. S.; Oda, S.; Hiyama, T. J. Am. Chem. Soc. 2006, 128, 8146.
  • 5Kanyiva, K. S.; Nakao, Y.; Hiyama, T. Heterocycles 2007, 72, 677.
  • 6Wang, M.-Z.; Wong, M.-K.; Che, C.-M. Chem. Eur. J. 2008, 14, 8353.
  • 7Xiao, Y.-P.; Liu, X.-Y.; Che, C.-M. J. Organomet.Chem. 2009, 694, 494.
  • 8Nakao, Y.; Kashihara, N.; Kanyiva, K. S.; Hiyama, T. Angew. Chem., Int. Ed. 2010, 49, 4451.
  • 9Zhou, F.; Cao, Z.-Y.; Zhang, J.; Yang, H.-B.; Zhou, J. Chem. Asian J.2012, 7, 233.
  • 10Chen, L.; Zhou, J. Chem. Asian J. 2012, 7, 2510.

同被引文献3

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部