期刊文献+

海上风电是风电产业未来的发展方向——全球及中国海上风电发展现状与趋势 被引量:34

Offshore wind power as the development trend of wind industry——Developments of global offshore wind power
下载PDF
导出
摘要 2014年,全球海上风电累计装机容量为8770兆瓦。短期内全球海上风电市场仍将保持高度集中,预计2024年全球累计装机容量将达到49944兆瓦,其中欧洲约占75%。海上风电市场的重心将从浅水区向深水区域转移,机组容量大型化成发展趋势。随着海上风电工程技术的不断成熟,风电发电成本将持续下降。中国海上风电产业已初具规模,截至2014年底,中国海上风电实际装机总量达657.88兆瓦。投资风险大、管理制度差、标准规范不健全、装备资源弱等是导致中国海上风电产业发展缓慢的主要原因。一体化风电解决方案能大大降低开发成本,将成为未来中国海上风电发展的主流商业模式。 Globally, total installed capacity of offshore wind power was over 8,700MW. In the short term, the global offshore wind market will remain highly concentrated. By 2024, it is predicted that the total global installed capacity of offshore wind will reach 49,944MW. European will account for over 75% of cumulative capacity in the same year. The focus of offshore wind market will change from shallow water to deep water, and the large-scale unit capacity has become the development trend in the world. With the development of offshore wind engineering technology, the Levelised cost of energy (LCoE) of offshore wind will continue to decline in the future. As of the end of 2014, China's offshore wind industry has roughly formed a scale with the actual installed capacity up to 657.88MW. The main reasons for the slow development of China's offshore wind power industry include high investment risk, poor management system, defective industry standard and weak equipment resources. The most popular business model of offshore wind power in the future will be integration solution of offshore wind, which will sharply reduce the developing cost.
出处 《国际石油经济》 2016年第4期29-36,共8页 International Petroleum Economics
关键词 海上风电 装机容量 商业模式 发电成本 管理制度 装备技术 offshore wind power installed capacity business model generating cost management system equipment technology
  • 相关文献

参考文献11

二级参考文献39

  • 1龚旭东,魏宏伟,亓发庆.辽东湾北部浅海区海洋工程地质特征[J].海岸工程,2006,25(2):47-54. 被引量:12
  • 2林毅峰,李健英,沈达,宋础.东海大桥海上风电场风机地基基础特性及设计[J].上海电力,2007,20(2):153-157. 被引量:47
  • 3Rubak R,Petersen J T.Monopile as part of aeroelastic wind turbine simulation code[A].Proceedings of the Offshore Wind Energy Conference[C].Copenhagen:COW,2005.
  • 4Cheng P w,van Kuik G A M,van Bussel G J W,et al.Bayesian analysis applied to statistical uncertainties of extreme response distributions of offshore wind turbines[J].Wind engineering,2002,26(3):157-169.
  • 5Liang Q H,zang J,Borthwick A G L,et al.Numerical simulation of non-linear wave interaction with an offshore wind turbine foundation[A].Proceedings of the Seventh 2006 ISOPE Pacific/Asia Offshore Mechanics Symposium[C].Dalian:ISOPE,2006:231-236.
  • 6Henderson A R(Ceasa),zaaijer M B.Hydrodymmic loading on offshore wind turbines[A].Proceedings of the International Offshore and Polar Engineering Conference[C].Toulon:ISOPE,2004:142-149.
  • 7Zaaijer M B.Comparison of monopile,tripod,suction bucket and gravity base design for a 6 MW turbine[A].Offshore Wind Energy in Mediterranean and Other European Seas[C].Naples:[s.n.],2003.
  • 8Trumars J M V,Tarp-Johansen N J,Krogh T.The effect of wave modelling on offshore wind turbine fatigue loads[A].Proceedings of the Offshore Wind Energy Conference[C].Copenhagen:COW,2005.
  • 9Veldkamp H F,Van Der Tempel J.Influence of wave modelling on the prediction of fatigue for offshore wind turbines[J].wind Energy,2005,8(1):49-65.
  • 10Van Wingerde A M,Van Delft D R V,Packer J A,et al.Survey of support structures for offshore wind turbines[J].Welding in the World,2006,50(SPEC):49-55.

共引文献243

同被引文献233

引证文献34

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部