期刊文献+

大数据中的因果关系及其哲学内涵 被引量:161

Causality in Big Data and Its Philosophical Connotations
原文传递
导出
摘要 在大数据中,数据化使因果关系量化为变量之间的关系,在获得关系强度和正负性质的同时,丧失了原有的必然性和方向性。大数据的相关关系,进一步展开了因果概念的重新刻画:因果关系是对因素相互作用过程与其效应之间关联的描述;而相关关系所描述的则是因果派生关系。作为因果派生关系,相关关系根植于因果性;作为未进入相互作用过程凝固为因果关系的因素关系,相关关系提供了由因素创构结果的广阔空间,这正是数据物化的因果性根据;而作为因素分析,相关定量分析的因果派生依据则构成大数据分析的因果基础。大数据中因果关系的厘清,晓示了其深层哲学内涵。因素关系的未来空间凸显创构认识论,因果派生关系的全数据定量分析呈现量的整体把握,而因果关系从描述到创构则彰显哲学以满足人的需要为最终目的。 In big data,datamation quantifies causal relations into relations between variables.This represents a gain in relationship strength and positive and negative properties,but a loss in terms of inevitability and direction.Big data correlation goes further in that it redefines the concept of causality:causality is a description of the process of interaction between factors,and what these correlations describe is causal derivative relationships.As causal derivative relationships,correlation is rooted in causality;as factor relations that have not yet entered the causal interaction process among factors and become fixed into causal relationships,correlation provides substantial space for factors to produce results,which constitutes the causal basis of data materialization;and as factor analysis,the causal derivative basis for the relevant quantitative analyses builds up the causal foundation for big data analytics.Big data's clarification of causality reveals its underlying philosophical content.The future space of factor relationship highlights creative epistemology,the holistic grasp of quantities shown in total data quantitative analysis of causal derivative relationships.From description to creation,causal relationships highlight the fact that the ultimate purpose of philosophy is to meet human needs.
作者 王天思
出处 《中国社会科学》 CSSCI 北大核心 2016年第5期22-42,204-205,共21页 Social Sciences in China
  • 相关文献

参考文献29

  • 1George E. P Launer and Press, 1979 Box, "Robustness in the Strategy of Scientific Model Building, " in R. L. G.N. Wilkinson, eds., Robustness in Statistics, New York: Academic p. 202.
  • 2Chris Anderson, "The End of Theory: The Data Deluge Makes the Scientific Method Obsolete, " Wired, June 2008.
  • 3Viktor Mayer-Schonberger and Kenneth Cukier, Big Data Will Transform How We Live, Work and Think, New York Harcourt, 2013, pp. 7,12, 17. A Revolution that Houghton Mifflin.
  • 4姜奇平.因果推断与大数据[J].互联网周刊,2014(18):70-71. 被引量:26
  • 5David Hume, An Enquiry Concerning Human Understanding, New York: Ox{ord University Press Inc., 1999, p. 146.
  • 6康德.《纯粹理性批判》,邓晓芒译,北京:人民出版社,2004年.
  • 7David Hume, An Enquiry Concerning Human Understanding, p. 159.
  • 8康德..《纯粹理性批判》..北京:生活.读书.新知三联书店,,1957..第16,260-261,456页..
  • 9Robert R. Pagano, Understanding Statistics in the Behavioral Sciences, 10th ed., Wadsworth: Cengage Learning, 2013, p.144.
  • 10Judea Pearl, Causality: Models, Reasoning and Inference, 2nd ed., Cambridge: Cambridge University Press, 2009, p. 176.

二级参考文献12

  • 1翟振明.虚拟实在与自然实在的本体论对等性[J].哲学研究,2001(6):62-71. 被引量:54
  • 2吕乃基.论非嵌入编码知识[J].自然辩证法研究,2006,22(1):104-107. 被引量:24
  • 3Eric Steinhart, Digital Metaphysics, Terrell Ward Byhum and James H. Moor, Ed. ,The Digital Phoenix: How Computers are Changing Philosophy, Blackwell Publishers,Ltd, 1998, p. 117.
  • 4Johnl Pollock, Procedural Epistemology, Terrell Ward Byhum and James H Moor, Ed., The Digital Phoenix: How Computers are Changing Philosophy, Blackwell Publishers, Ltd, 1998, p, 17.
  • 5Eric Steinhart, Digital Metaphysics, Terrell Ward Byhum and James H Moor, Ed ,The Digital Phoenix: How Computers are Changing Philosophy, Blackwell Publishers,Ltd, 1998, p. 117.
  • 6王天思 微观认识论导论.一种描述论研究:第二编[M].江西人民出版社,2003年8月版..
  • 7吕乃基.走进世界3——纪念波普尔提出“世界3”理论40周年[J].东北大学学报(社会科学版),2007,9(6):471-477. 被引量:6
  • 8维克托·迈尔-舍恩伯格;盛杨燕;周涛.大数据时代——生活、工作与思维的大变革[M]杭州:浙江人民出版社,2012.
  • 9Bill Franks;黄海.驾驭大数据[M]北京:人民邮电出版社,2013.
  • 10吕乃基.三个世界的关系——从本体论的视角看[J].哲学研究,2008(5):107-114. 被引量:19

同被引文献1650

引证文献161

二级引证文献1456

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部