期刊文献+

基于贝叶斯压缩感知的复数稀疏信号恢复方法 被引量:3

Sparse Signal Recovery Based on Complex Bayesian Compressive Sensing
下载PDF
导出
摘要 该文利用复数稀疏信号的时域相互关系提出一种新的稀疏贝叶斯算法(CTSBL)。该算法利用复数信号的实部与虚部分量具有相同的稀疏结构的特点,提升估计信号的稀疏程度。同时将多个测量信号间的内部结构信息引入到了信号恢复中,使原始的多测量稀疏信号恢复问题转变为单测量块稀疏信号恢复问题,使恢复性能得到了提升。理论分析和仿真结果证明,提出的CTSBL算法相较于目前的针对复数信号的多测量矢量贝叶斯压缩感知(CMTBCS)算法和块正交匹配追踪算法(BOMP)在估计精度上具有更好的性能。 An effective Sparse Bayesian Learning algorithm exploiting Complex sparse Temporal correlation(CTSBL) is proposed in this paper, which is used to recover sparse complex signal. By exploiting the fact that the real and imaginary components of a complex value share the same sparsity pattern, it can improve the sparsity of the estimated signal. A multitask sparse signal recovery issue is transformed to a block sparse signal recovery issue of a single measurement by taking full advantage of the internal structure information among the multiple measurement vector signals. The experiments show that the proposed algorithm CTSBL achieves better recovery performance compared with the existing Complex Multi Task Bayesian Compressive Sensing(CMTBCS) algorithm and BOMP algorithm.
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第6期1419-1423,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61571148) 中国博士后科学基金(2014M550182) 黑龙江省博士后特别资助(LBH-TZ0410) 哈尔滨市科技创新人才资助课题(2013RFXXJ016) 中国博士后特别资助(2015T80328)~~
关键词 压缩感知 稀疏信号恢复 多矢量测量模型 块稀疏贝叶斯 Compressive Sensing(CS) Sparse signal recovery Multitask measurement vector model Block sparse Bayes
  • 相关文献

参考文献20

  • 1DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/ TIT.2006.871582.
  • 2ELAD M. Sparse and Redundant Representations[M]. New York: Springer, 2010: 1094-1097.
  • 3王天云,于小飞,陈卫东,丁丽,陈畅.基于稀疏贝叶斯学习的无源雷达高分辨成像[J].电子与信息学报,2015,37(5):1023-1030. 被引量:6
  • 4孙磊,王华力,许广杰,苏勇.基于稀疏贝叶斯学习的高效DOA估计方法[J].电子与信息学报,2013,35(5):1196-1201. 被引量:21
  • 5CHEN S and DONOHO D L. Atomic decomposition by basis pursuit[J]. IEEE Transactions on Signal Processing, 1995, 43(1): 33-61. doi: 10.1137/S1064827596304010.
  • 6THEIS F J, JUNG A, PUNTONET C G, et al. Signal recovery from partial information via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 15(2): 419-439.
  • 7TIBSHIRANI R. Regression shrinkage and subset selection with the Lasso[J]. Journal of the Royal Statistical Society, 1996, 58(1): 267-288.
  • 8HUANG J and ZHANG T. The benefit of group spaxsity[J]. Annals of Statistics, 2009, 38(4): 1978-2004. doi: 10.1214/09- AOS778.
  • 9YUAN M and LIN Y. Model selection and estimation in regression with grouped variables[J]. Journal of the Royal Statistical Society, 2006, 68(1): 49-67. doi: 10.1111/j. 1467-9868.2005.00532.x.
  • 10FU Y L, LI H F, ZHANG Q H, et al. Block-sparse recoveryvia redundant block OMP[J]. Signal Processing, 2014, 97(7): 162-171. doi:lO, lO16/j.sigpro.2013.10.030.

二级参考文献58

  • 1王大海,王俊.单发多收模式下无源雷达成像研究[J].电子学报,2006,34(6):1138-1141. 被引量:21
  • 2Malioutov D, Qetin M, and Willsky A S. A sparse signalreconstruction perspective for source localization with sensorarrays[J]. IEEE Transactions on Signal Processing, 2005,53(8): 3010-3022.
  • 3Yin Ji-hao and Chen Tian-qi. Direction-of-arrival estimationusing a sparse representation of array covariance vectors[J].IEEE Transactions on Signal Processing, 2011, 59(9):4489-4493.
  • 4Xu Dong-yang, Hu Nan, Ye Zhong-fu, et al. The estimate forDOAs of signals using sparse recovery method[C].Proceedings of IEEE International Conference on Acoustics,Speech, Signal Processing, Kyoto, 2012: 2573-2576.
  • 5Blancol L and Najar M. Sparse covariance fitting fordirection of arrival estimation[J]. EURASIP Journal onAdvances in Signal Processing, 2012, DOI: 10.1186/1687-6180-2012-111.
  • 6Zheng Chun-di, Li Gang, Zhang Hao, et al" An approach ofDOA estimation using noise subspace weighted ^minimization [C]. Proceedings of IEEE InternationalConference on Acoustics, Speech, Signal Processing, Prague,2011: 2856-2859.
  • 7Zheng Chun-di, Li Gang, Liu Yi-min, et al" Subspaceweighted ^: minimization for sparse signal recovery [J].EURASIP Journal on Advances in Signal Processing, 2012,DOI: 10. 1186/1687-6180-2012-98.
  • 8Xu Xu, Wei Xiao-han, and Ye Zhong-fu. DOA estimationbased on sparse signal recovery utilizing weighted ^-normpenalty [J]. IEEE Signal Processing Letters, 2012,19(3):155-158.
  • 9Hyder M M and Mahata K. Direction-of-arrival estimationusing a mixed o norm approximation [J]. IEEE TYansactionson Signal Processing, 2010,58(9): 4646-4655.
  • 10Wipf D P and Rao B D. Sparse Bayesian learning for basisselection [J]. IEEE Transactions on Signal Processing,2004,52(8): 4036-4048.

共引文献25

同被引文献5

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部