摘要
为了研究提高发射药燃烧增面技术,根据3D打印技术可制造特殊形状物体的原理和发射药平行层燃烧定律,设计了具有多列环形空槽管形结构的高燃烧增面的整体发射药。分析了整体发射药燃面和燃气生成量及燃气生成速率随燃烧进行的变化规律。建立了整体发射药相对燃面和相对燃气生成量随燃烧进行的变化规律计算方法。对比分析了整体发射药与19孔粒状发射药的相对燃面和相对燃气生成量随相对燃烧层厚度变化的规律。结果表明,设计的整体发射药具有较高的燃烧增面,可用于155 mm火炮的整体发射药,燃烧结束时相对燃面比19孔粒状发射药的相对燃面大3.1倍。整体发射药在燃烧过程中,燃气生成速率呈现前低后高的状态,75.612%的燃气生成量在整体发射药燃烧的后半程产生,比19孔粒状发射药高27.575%。
To study the technology of improving the propellant increase burning area based on the principle of manufacturing the special shape objects by the 3D printing technology and the law of propellant burning parallel layers,the integral propellant with high increase burning area having multi empty annular groove tubular structure was designed. The changing rules of area of burning surface and the generation amount of burning gas and generation rate of burning gas for the integral propellant along with burning were analyzed. The calculation method of changing rule of the relative area of burning surface and the relative generation amount of burning gas along with burning were established. The changing rules of the relative area of burning surface and the relative generation amount of burning gas of the integral propellant and 19 holes granular propellant with the relative burning thickness were compared and analyzed. Results show that the designed integral propellant has higher burning area increase. The relative area of burning surface at the end of combustion for the integral propellant used for 155 mm howitzer is 3. 1 times more than that of 19 holes granular propellant. The burning gas generation rate of the integral propellant reveals the status of first low and than high in the combustion process. The generation amount of burning gas in the integral propellant combustion after the half is about more than 75. 612% of total generation amount of burning gas,27. 575%more than 19 holes granular propellant.
出处
《含能材料》
EI
CAS
CSCD
北大核心
2016年第5期491-496,共6页
Chinese Journal of Energetic Materials
基金
装备与技术创新项目(BQG375201503)
关键词
3D打印技术
整体发射药
燃烧增面性
3D printing technology
integral propellant
increase burning area