期刊文献+

风力摆的精确控制设计

Wind pendulum control system design and production
下载PDF
导出
摘要 设计一测控系统,控制驱动各风机使风力摆按照一定规律运动,激光笔在地面画出要求的轨迹。本设计由STM32F4处理器,陀螺仪、OLED显示屏、人机交互系统及万向节结构等组成闭环控制系统。陀螺仪经姿态解算为系统提供PID精确控制风机转速的数据[1]。在驱动方面,采用脉冲宽度调试技术控制大电流驱动芯片BTN7971,能够很好的对直流风机的转速、方向、启停等多种工作状态进行快速、准确控制,达到对激光笔位置的控制。在控制电源方面,采用了LDO线性稳压芯片,电源波纹小,保证系统的稳定运行。本系统实现了风力摆在仅受直流风机为动力控制下快速起摆、画线、恢复静止的功能,并能准确画圆,且受风力影响后能够快速恢复画圆状态,具有很好的鲁棒性。另外,本系统具有良好的人机交互界面,各参数及测试模式可由按键输入并通过液晶显示,操作简单方便。 Design a measurement and control system, control drive the fan makes wind pendulum movement according to certain rule, laser pen to draw the required path on the ground.This design by STM32F4 micro-processor,gyroscope,OLEDdisplay, human-computer interaction system, universal joint structure of closed-loop control system, etc. Gyro attitude algorithm, data for the system to provide the accurate PID control fan speed.In drive, using the pulse width control large current driver chip BTN7971 debugging technology, can very good to dc fan speed, direction and start-stop and other working condition for rapid, accurate control.The brush position control.LOD linear regulator was adopted in the power control chip,the power supply ripple is small, ensure the stable operation of the system.This system has realized the wind in the under the dc fan power control was only fast the pendulum, line drawing, restore the function of static, and accurately draw circle, and affected by the wind can quickly restore circle state, has the very good robustness.In addition, this system has good manmachine interface, the parameters and test mode is the key input and through the liquid crystal display, operation is simple and convenient.
出处 《电子设计工程》 2016年第11期127-129,133,共4页 Electronic Design Engineering
关键词 STM32 直流风机 脉冲宽度调制 PID 人机交互 STM32 DC Blower PWM PID human-computer interaction
  • 相关文献

参考文献6

二级参考文献34

  • 1祁飞,刘成国.无人机航迹跟踪控制与仿真[J].计算机仿真,2006,23(11):75-78. 被引量:5
  • 2吴森堂,费玉华.飞行控制系统[M].北京:北京航空航天大学出版社,2006:258-262.
  • 3Shim D H, Kim H J, Sastry S. A flight control system for aerial robots: algorithms and experiments[J].IFAC Control Engineering Practice, 2003, 11(12) : 1389- 1400.
  • 4Putz P. Space robotics in Europe: a survey[J]. Robotics and Autonomous Systems, 1998, 23(1/2) :3 -16.
  • 5Paul T, Krogstad T R, Gravdahl J T. Modelling of UAV formation flight using 3D potential field [J]. Simulation Modelling Practice and Theory, 2008, 16(9):1453-1462.
  • 6Augiar A P, Hespaha J P, Kokotovic P V. Path-following for nonminimum phase systems removes performance limitations[J]. IEEE Transactions on Automatic Control, 2005, 50(2): 234-239.
  • 7Jung D. Hierarchical path planning and control of a small fixed wing UAV: theory and experimental validation[D]. Atlanta: Georgia Institute of Technology, 2007.
  • 8Park S, Deyst J, How J P. A new nonlinear guidance logic for trajectory tracking[R]. AIAA-2004-4900, 2004.
  • 9Campa G, Gu Y, Seanor B, et al. Design and flight-testing of non linear formation control laws[J]. Control Engineering Practice, 2007, 15(9): 1077-1092.
  • 10Ali D, Hend L, Hassani M. Optimized eigenstructure assignment by ant system and LQR approaches[J]. International Journal of Computer Science and Applications, 2008, 5(4): 45-56.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部