摘要
移动设备放置位置多样化以及不同用户行为的差异性,大大增加了用户行为识别的难度。为了提高移动用户行为识别的准确率,本文提出了一种多分类器融合的移动用户行为识别模型(BRMMCF)。该模型根据融合算法将多个基分类器的识别结果进行融合处理,得到行为识别的最终结果。该模型分别采用SVM和决策树作为分类算法,基于数据集XUPT-AAD进行了验证。实验结果表明,该模型对静止、步行、跑步、上楼、下楼的平均识别准确率达到95.05%。
出处
《科技视界》
2016年第16期22-23,共2页
Science & Technology Vision