期刊文献+

Radar Target Recognition Algorithm Based on RCS Observation Sequence——Set-Valued Identification Method 被引量:10

Radar Target Recognition Algorithm Based on RCS Observation Sequence——Set-Valued Identification Method
原文传递
导出
摘要 This paper studies the problem of radar target recognition based on radar cross section(RCS)observation sequence.First,the authors compute the discrete wavelet transform of RCS observation sequence and extract a valid statistical feature vector containing five components.These five components represent five different features of the radar target.Second,the authors establish a set-valued model to represent the relation between the feature vector and the authenticity of the radar target.By set-valued identification method,the authors can estimate the system parameter,based on which the recognition criteria is given.In order to illustrate the efficiency of the proposed recognition method,extensive simulations are given finally assuming that the true target is a cone frustum and the RCS of the false target is normally distributed.The results show that the set-valued identification method has a higher recognition rate than the traditional fuzzy classification method and evidential reasoning method.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2016年第3期573-588,共16页 系统科学与复杂性学报(英文版)
基金 supported by the National Natural Science Foundation of China under Grant No.61174042 the National Key Basic Research Program of China(973 Program) under Grant No.2014CB845301
关键词 Feature extraction radar target recognition RCS set-valued identification wavelet transform. 展示抽取;雷达目标识别;RCS;珍视集合的鉴定;小浪变换;
  • 相关文献

参考文献2

二级参考文献12

  • 1曹鹏,唐晓兵,贺正洪.基于D-S理论的目标识别[J].空军工程大学学报(自然科学版),2000,1(3):42-45. 被引量:2
  • 2Wang L Y,Zhang J F,Yin G. System identification using binary sensors[J].IEEE Transactions on Automatic Control,2003,(11):1892-1907.doi:10.1109/TAC.2003.819073.
  • 3Wang L Y,Yin G G,Zhang J F. Joint identification of plant rational models and noise distribution functions using binary-valued observations[J].Automatica,2006,(04):535-547.doi:10.1016/j.automatica.2005.12.004.
  • 4Wang L Y,Yin G G,Zhao Y L,Zhang J F. Identification input design for consistent parameter estimation of linear systems with binary-valued output observations[J].IEEE Transactions on Automatic Control,2008,(04):867-880.
  • 5Wang L Y,Yin G G,Zhang J F,Zhao Y L. Space and time complexities and sensor threshold selection in quantized identification[J].Automatica,2008,(12):3014-3024.
  • 6Zhao Y L,Wang L Y,Yin G G,Zhang J F. Identification of Wiener systems with binary-valued output observations[J].Automatica,2007,(10):1752-1765.doi:10.1016/j.automatica.2007.03.006.
  • 7Zhao Y L,Wang L Y,Yin G G,Zhang J F. Identification of Hammerstein systems with quantized observations[J].SIAM Journal on Control and Optimization,2010,(07):4352-4376.
  • 8Wang L Y,Yin G,Zhang J F,Zhao Y L. System Identification with Quantized Observations[M].Theory and Applications,Springer,2010.
  • 9Guo J,Zhang J F,Zhao Y L. Adaptive tracking control of a class of first-order systems with binary-valued observations and time-varying thresholds[J].IEEE Transactions on Automatic Control,2011,(12):2991-2996.
  • 10Guo J,Zhang J F,Zhao Y L. Adaptive tracking of a class of first-order systems with binary-valued observations and fixed thresholds[J].Journal of Systems Science and Complexity (Accepted),.

共引文献7

同被引文献48

引证文献10

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部