摘要
离心水泵是舰船上面重要的流体机械,广泛应用于船舶冷却系统、舱底压载系统、循环水系统及消防系统。同时离心泵也是舰船管路噪声源之一,影响着船舶运行环境舒适性与舰船的安全隐蔽性。本文利用fluent软件计算流场非定常过程中叶轮所受时域脉动压力,并提出优化方案。将其作为激励源加载到水泵电机有限元模型上,采用隐式有限元法计算泵组表面振动速度与机脚处加速度,估算泵组振动烈度。将有限元振动速度导入Virtual.Lab软件,采用声学边界元计算泵组的空气噪声辐射。计算结果表明,泵组出水口处与机脚处振动噪声较大,应采用相关的减振降噪技术。
Centrifugal pumps are important fluid machinery on ship, widely used in cooling system, bilge ballast system, circulating water systems, fire systems, etc. Centrifugal pump is also one noise source of ship pipeline, affecting the comfort and safety of the ship runtime environment. In this paper, Fluent is used to calculate the impeller suffered temporal fluctuation pressure during the unsteady flow period. The pressure load as an excitation source is applied to the pump motor finite element model and an implicit finite element method is used to calculate surface vibration and acceleration of the machine, and pump vibration intensity can be estimated. By importing the finite element vibration velocity into Virtual.Lab, using acoustic BEM air radiated noise of pump is calculated. The results show that:the noise of the outlet and the foot of pump is large and hence noise reduction technology is necessary.
出处
《舰船科学技术》
北大核心
2016年第5期49-55,共7页
Ship Science and Technology
关键词
船用离心泵
水激振动噪声
间接边界元
声辐射
centrifugal pump
vibration and noise
indirect BEM
acoustic radiation