期刊文献+

平衡问题不动点问题和零点问题的公共元的强收敛定理 被引量:4

Strong Convergence Theorems of Common Elements for Fixed Point Problems Equilibrium Problems and Zero Point Problems
下载PDF
导出
摘要 在具有K-K性质的严格凸的一致光滑Banach空间中,设计了一种新的收缩投影迭代方法用以逼近一族拟φ-非扩张映像的公共不动点集与一族极大单调算子的公共零点集以及一个平衡问题解集的公共元素,并利用所设计的算法证明了公共元的强收敛定理.作为应用,给出了一个寻找变分不等式的解的问题. A new shrinking projection method is proposed to approximate common elements of the set of common fixed points of a family of quasi-φ-nonexpansive mappings,the set of solutions of an equilibrium problem and the set of common zero points of a family of maximal monotone operators.A strong convergence theorem of common elements is proved by using new analysis techniques in the setting of strictly convex,and uniformly smooth Banach spaces with the K-K property.As applications,the problem of finding a solution of a variational inequality is considered.
出处 《宁夏大学学报(自然科学版)》 CAS 2016年第2期135-140,共6页 Journal of Ningxia University(Natural Science Edition)
基金 陕西省自然科学基础研究计划资助项目(2014JM2-1003) 陕西省教育厅科研计划资助项目(2013JK0575) 陕西省高水平大学建设专项基金资助项目(数学学科 2012SXTS07)
关键词 平衡问题 拟φ-非扩张映像 极大单调算子 零点问题 equilibrium problem quasi-φ-nonexpansive mapping maximal monotone operator zero points problem
  • 相关文献

参考文献3

二级参考文献60

  • 1倪仁兴.含k-次增生算子的非线性方程的迭代程序[J].浙江大学学报(理学版),2006,33(5):491-495. 被引量:5
  • 2Blum, E., Oetti, W. From optimization and variational inequalities to equilibrium problems. Math. Student, 63:123 145 (1994).
  • 3Browder, F.E. Fixed point theorems for noncompact mappings in Hilbert spaces. Proc. Natl. Acad. Sci. USA, 53:1272-1276 (1965).
  • 4Butnariu, D., Reich, S., Zaslavski, A.J. Asymptotic behavior of relatively nonexpansive operators in Banach spaces. J. Appl. AnaL, 7:151-174 (2001).
  • 5Butnariu, D., Reich, S., Zaslavski, A.J. Weak convergence of orbits of nonlinear operators in reflexive Banach spaces. Numer. F~nc~. Anal Optim., 24:489 508 (2003).
  • 6Cho, Y.J., Zhou, H.Y., Guo, G. Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings. Comput. Math. Appl., 47:707-717 (2004).
  • 7Combettes, P.L., Hirstoaga, S.A. Equilibrium programms in Hilbert spaces. J. Nonlinear. Convex Anal., 6:117-136 (2005).
  • 8Halpern, B. Fixed points of nonexpanding maps. Bull. Am. Math. Soc., 73:957-961 (1967).
  • 9Hudzik, H., Kowalewski, W., Lewicki, G. Approximative compactness and full rotundity in Musielak-Orlicz spaces and Lorentz-Orlicz spaces. Zeitschrift Fur Analysis und ihre Anwendungen, 25:163-192 (2006).
  • 10Kamimura, S., Takahashi, W. Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim., 13:938-945 (2002).

共引文献11

同被引文献13

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部