期刊文献+

基于相似性的机械设备剩余使用寿命预测方法 被引量:8

Approach for remaining useful life prediction for mechanical equipment based on similarity
下载PDF
导出
摘要 针对复杂机械设备剩余使用寿命难以预测的问题,提出了基于相似性的机械设备剩余使用寿命预测方法。基于相关性分析设计了特征量选取方案,通过计算预测数据与样本数据对应特征量的相似程度确定参考剩余使用寿命与权重,再计算参考剩余使用寿命的加权和,得到剩余使用寿命。实验结果表明,该方法能有效提取出可准确反映轴承剩余使用寿命变化趋势的特征量,且能有效地预测轴承剩余使用寿命,准确率高达81.8%,为相关设备的寿命管理提供了科学依据。 In view of problem that remaining useful life of complex machinical equipment was difficult to predict,an approach for remaining useful life prediction based on similarity was presented.Feature extraction method was established based on correlation analysis,reference remaining useful life and its weight can be determined by computing similarity of the relevant feature between sample data and prediction data.Finally,remaining useful life can be obtained by calculating weighted sum of the reference remaining useful life.Experiment results show that the proposed approach can effectively extract feature which can precisely reflect variation trend of the remaining useful life of bearing,and can more effectively predict remaining useful life of bearing with accuracy rate of 81.8%,and provides a scientific basis for life management of related equipment.
出处 《工矿自动化》 北大核心 2016年第6期52-56,共5页 Journal Of Mine Automation
基金 山西省科技重大专项计划基金资助项目(20131101029)
关键词 机械设备 使用寿命 预测 相关性分析 mechanical equipment useful life prediction correlation analysis
  • 相关文献

参考文献18

  • 1WANG T, YU J, SIEGEL D, et al. A similarity- based prognostics approach for remaining useful life estimation of engineered systems [C]//International Conference on Prognostics and Health Management, Denver, CO, 2008:1-6.
  • 2陈铎,王刚.基于矿山物联网的设备动态管理系统[J].工矿自动化,2013,39(5):16-19. 被引量:11
  • 3MARSEGUERRA M, ZIO E, PODOFILLIN1 L. Condition-based maintenance optimization by means of genetic algorithms and Monte Carlo simulation[J]. Reliability Engineering and System Safety, 2002, 77(2) :151-165.
  • 4钟媛,魏国彬,李翠平,阮竹恩.基于物联网的矿井设备管理系统设计[J].工矿自动化,2015,41(10):52-55. 被引量:8
  • 5SWANSON D C, SPENCER J M, ARZOUMANIAN S H. Prognostic modeling of crack growth in a tensioned steel band [J]. Mechanical Systems and Signal Processing, 2000,14(5) :789 803.
  • 6VACHTSEVANOS G, WANG P. Fault prognosis using dynamic wavelet neural networks [C]//IEEE Systems Readiness Technology Conference AUTOTESTCON Proceedings, Valley Forge, PA, 2001 : 857-870.
  • 7GEBRAEEL N Z, LAWLEY M A, LI R, et al. Residual-life distributions from component degradation signals a Bayesian approach [J] . IIE Transactions, 2005,37(6) .. 543-557.
  • 8GEBRAEEL N Z. Sensory-updated residual life distributions for components with exponential degradation patterns[J]. IEEE Transactions on Auto Science and Engineering, 2006, 3(4)..382 393.
  • 9BANJEVIC D, JARDINE A K S. Calculation ofreliability function and remaining useful life for a Markov failure time process [J]. IMA Journal of Management Mathematics, 2006,17 (2) :115-130.
  • 10张星辉,康建设,高存明,曹端超,滕红智.基于MoG-HMM的齿轮箱状态识别与剩余使用寿命预测研究[J].振动与冲击,2013,32(15):20-25. 被引量:14

二级参考文献36

  • 1韩捷,董辛旻,靳红涛,关惠玲.基于Internet的设备远程状态监测与故障诊断[J].机械科学与技术,2004,23(12):1503-1505. 被引量:9
  • 2Boutros T,Liang M. Detection and diagnosis of bearing and cutting tool faults using hidden Markov models[J].Mechanical Systems and Signal Processing,2011.2102-2124.
  • 3Lee J M,Kim S J,Hwang Y. Diagnosis of mechanical fault signals using continuous hidden Markov model[J].Journal of Sound and Vibration,2004.1065-1080.
  • 4Purushotham V,Narayanan S,Prasad S A N. Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition[J].NDT & E International,2005,(8):654-664.doi:10.1016/j.ndteint.2005.04.003.
  • 5Dong M,He D. A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology[J].Mechanical Systems and Signal Processing,2007,(5):2248-2266.doi:10.1016/j.ymssp.2006.10.001.
  • 6Zhou Z J,Hu C H,Xu D L. A model for real-time failure prognosis based on hidden Markov model and belief rule base[J].European Journal of Operational Research,2010.269-283.
  • 7Bezdek J C. Pattern recognition with fuzzy objective function algorithms[M].Plenum Press,1981.
  • 8Bensaid A M,Hall L O,Bezdek J C. Validity-guided (Re) clustering with applications to image segmentation[J].IEEE Transactions on Fuzzy Systems,1996.112-123.
  • 9Xie X L,Beni G. A validity measure for fuzzy clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,(08):841-847.doi:10.1109/34.85677.
  • 10Zhigang Tian,Ming J. Zuo,Siyan Wu.Crack propagation assessment for spur gears using model-based analysis and simulation[J]. Journal of Intelligent Manufacturing . 2012 (2)

共引文献30

同被引文献63

引证文献8

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部