期刊文献+

近红外漫反射光谱无损预测片剂硬度研究 被引量:7

Non-Destructive Prediction of Tablet Hardness by Near Infrared Diffuse Reflection Spectroscopy
原文传递
导出
摘要 目的建立近红外快速预测片剂硬度的方法。方法采用硬度仪获得片剂真实硬度,运用偏最小二乘回归法(PLSR)和反向人工神经网络(BP-ANN)法建立近红外光谱与硬度之间的校正模型。结果偏最小二乘回归模型的相关系数r=0.9778,内部交叉验证均方根误差(RMSECV)为0.742 kg,预测均方根误差(RMSEP)为0.815 kg;反向人工神经网络训练集、监控集和测试集的相关系数r分别为0.987 3、0.985 6、0.986 8,各数据集的相对标准偏差(RSE%)分别为6.83%、8.77%、6.69%。结论反向人工神经网络非线性模型预测准确度要优于偏最小二乘回归线性模型。 OBJECTIVE To establish a method for predicting tablet hardness by near infrared diffuse reflection spectroscopy. METHODS Tablet hardness value was obtained by hardness meter. Calibration model between NIR spectra and the hardness was es- tablish by partial least squares regression (PLSR) method and BP-ANN method. RESULTS Correlation coefficients (r), root mean squares error of cross-validation ( RMSECV ), and root mean square error of prediction (RMSEP) obtained by PLSR model were 0. 977 8, 0. 742 and 0. 815 kg respectively. And the correlation coefficients of training set, monitor set and testing set by BP-ANN were 0. 987 3, 0. 985 6, and 0. 986 8, with RSE% of 6. 83%, 8.77%, and 6. 69%, respectively. CONCLUSION The prediction accuracy of BP-ANN nonlinear model is superior to the PLSR model
出处 《中国药学杂志》 CAS CSCD 北大核心 2016年第11期904-909,共6页 Chinese Pharmaceutical Journal
基金 “十二五”重大新药创制专项(2012ZX09102201011) 江西省科技厅科技计划专项(20151BBG70031) 江西中医药大学科技计划(2013ZR0076)
关键词 近红外漫反射光谱 硬度 反向人工神经网络 偏最小二乘回归法 near infrared diffuse reflection spectrum hardness back-propagation artificial neural networks PLSR
  • 相关文献

参考文献5

  • 1LU W Z.Modern Near Infrared Spectroscopy Analytical Technology.2nd Ed(现代近红外光谱分析技术.第二版)[M].Beijing:China Petrochemical Press,2007.
  • 2MORISSEAU K M,RHODES C T.Near-infrared spectroscopy as a nondestructive alternative to conventional tablet hardness testing[J].Pharm Res,1997,14(1):108-111.
  • 3CHEN Y,THOSAR S S,FORBESS R A,et al.Prediction of drug content and hardness of intact tablets using artificial neural network and near-infrared spectroscopy[J].Drug Dev Ind Pharm,2001,27(7):623-631.
  • 4TANABE H,OTSUKA K,OTSUKA M.Theoretical analysis of tablet hardness prediction using chemoinformetric near-infrared spectroscopy[J].Anal Sci,2007,23(7):857-862.
  • 5刘平,梁逸曾,张林,俞汝勤.人工神经网络用于化学数据解析的研究(Ⅰ)──逼近规律与过拟合[J].高等学校化学学报,1996,17(6):861-865. 被引量:32

二级参考文献6

  • 1蔡淑安,高等学校化学学报,1994年,15卷,982页
  • 2张承福,力学进展,1994年,24卷,181页
  • 3宋新华,中国科学.B,1993年,23卷,3期,245页
  • 4史忠植,神经计算,1993年
  • 5焦李成,神经网络计算,1993年
  • 6俞汝勤,化学计量学导论,1991年

共引文献31

同被引文献164

引证文献7

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部