期刊文献+

基于模型诊断和skyline查询的电网故障诊断 被引量:2

Fault Diagnosis of Power System Based on Model-based Diagnosis and Skyline Query
下载PDF
导出
摘要 针对基于专家经验的电网故障诊断系统开发周期长,且难以诊断经验之外故障的问题,提出一种基于模型诊断和skyline查询的电网故障诊断方法.该方法根据测点分布将待诊断系统分解成若干独立子系统,利用故障输出与元件之间的因果关系建立系统模型,然后推理每个子系统的候选诊断,将实际告警信息引入到模型诊断逻辑框架中,运用skyline查询算法从候选诊断中识别故障元件.通过离线获得预备候选诊断,在线确认候选诊断的手段,缩减了诊断的时间,提高了诊断的效率,将实际告警信息引入到模型诊断的逻辑框架内,提高了诊断的有效性.仿真表明方法条理清晰,计算简便,能够有效地减少诊断时间和空间复杂度. The expert system used in power system fault diagnosis has a long development cycle and can not diagnose the faults beyond experiences. A kind of fault diagnosis of power system was proposed based on model-based diagnosis and skyline query. The diagnosed system was decomposed into several independent subsystems based on the distribution of measurement points. By establishing system models considering the causality between the system failure output and system element, candidate diagnosis of each subsystem was inferred. The actual alarm information was introduced into diagnosis logic framework to identify the fault element from candidate diagnosis by using skyline query. Ready candidate diagnosis was obtained offline and candidate diagnostic was conf'Lrmed online based on the proposed method, which saved the time of diagnosis. Actual alarm information was introduced into diagnosis logic framework, which improved the efficiency of diagnosis. The simulation results show that the method can effectively reduce the complexity of time and space.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第6期765-769,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61433004) 中央高校基本科研业务费专项资金资助项目(N130604001)
关键词 电网故障诊断 基于模型诊断 候选诊断 告警信息 SKYLINE查询 power system fault diagnosis model-based diagnosis candidate diagnosis alarm information skyline query
  • 相关文献

参考文献14

  • 1刘鑫蕊,徐国俊,叶金凤,张婧.基于多源信息的智能电网动态层次化故障诊断[J].东北大学学报(自然科学版),2014,35(9):1221-1224. 被引量:3
  • 2Cho H J,Park J K.An expert system for fault section diagnosis of power system using fuzzy relations[J].IEEE Transactions on Power Systems,1996,12(1):342-347.
  • 3Lee H J,Park D Y,Ahn B S,et al.A fuzzy expert system for the integrated fault diagnosis[J].IEEE Transaction on Power Delivery,2000,15(2):833-838.
  • 4De Kleer J,Williams B C.Diagnosing multiple faults[J].Artificial Intelligence,1987,32(1):97-130.
  • 5De Kleer J,Mackworth A K,Peiter R.Characterizing diagnoses and systems[J].Artificial Intelligence,1992,56(2/3):197-222.
  • 6Lampetrti G,Zanella M.Flexible diagnosis of discrete event systems by similarity-based reasoning techniques [J].Artificial Intelligence,2006,170(3):232-297.
  • 7Chittar L,Ranon R.Hierarchical model-based diagnosis based on structural abstraction[J].Artificial Intelligence,2004,155(1/2):147-182.
  • 8Lampetrti G,Zanella M,Zanni D.Incremental processing of temporal observations in model-based reasoning [J].AI Communications,2007,20(1):27-37.
  • 9刘志刚,钟炜,邓云川,曲昌军.牵引变电站故障的基于模型诊断方法[J].中国电机工程学报,2010,30(34):36-41. 被引量:28
  • 10关龙,刘志刚,徐建芳,王英.基于模型的配电网故障诊断关键问题研究[J].电力系统保护与控制,2012,40(20):145-150. 被引量:16

二级参考文献60

共引文献84

同被引文献25

引证文献2

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部